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Niche variation owing to individual differences in ecology has been hypoth-

esized to be an early stage of sympatric speciation. Yet to date, no study has

tracked niche width over more than a few generations. In this study, we

show the presence of isotopic niche variation over millennial timescales

and investigate the evolutionary outcomes. Isotopic ratios were measured

from tissue samples of sympatric killer whale Orcinus orca lineages from

the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range

similar to the difference in isotopic values of two known prey items, herring

Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of

speciation, lineage sorting of mitogenomes and genotypic clustering, were

both weak to intermediate indicating that speciation has made little pro-

gress. Thus, our study confirms that even with the necessary ecological

conditions, i.e. among-individual variation in ecology, it is difficult for sym-

patric speciation to progress in the face of gene flow. In contrast to some

theoretical models, our empirical results suggest that sympatric speciation

driven by among-individual differences in ecological niche is a slow process

and may not reach completion. We argue that sympatric speciation is con-

strained in this system owing to the plastic nature of the behavioural traits

under selection when hunting either mammals or fish.
1. Introduction
Ecological variation is the raw material by which natural selection can drive

evolutionary divergence [1–4]. This variation can take the form of differences

between specialist populations, but also individual differences in niche within a

generalist population [5–8]. Recent studies have suggested that strong natural selec-

tion owing to niche variation within a generalist population (e.g. among-individual

differences) can promote adaptive divergence of phenotypic traits and assortative

mating [9–12], and niche variation is therefore a potential early stage of sympatric

speciation [13–15]. Niche variation would need to be present and stable in a

population over evolutionary timescales for disruptive selection to promote direc-

tional progress towards speciation [8,15]. Most evolutionary studies typically use

either comparisons at a single point in time or over timescales representing one

to a few generations [15–17] or infer ancestral states using phylogenetic-based

methods [18]. This snapshot of evolution may only be partially informative, as

throughout the speciation process, diverging populations may have experienced

changes in ecological conditions, geographical distribution and population size

that could have influenced the strength of selection and the rate of progress towards

speciation [19–22]. However, real-time tracking of niche width in long-lived species
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Figure 1. (a) Map of sample locations, recent samples are coloured red, while subfossils are coloured black. (b) Three geographically proximate specimens from
Northern Jutland, Denmark with the same mDNA control region haplotype illustrate the variation in isotopic niche among samples: (i) subfossil teeth radiocarbon
dated to 6800 14C years BP; (ii) a specimen which had fish bones in its stomach; (iii) a specimen which had the remains of several harbour seals and harbour
porpoise in its stomach. The worn teeth found in all three specimens suggest some overlap in the diet, the isotopic differences suggest differences between these
individuals in the relative proportions of prey species consumed.
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over evolutionary and ecological timescales can be achieved

by the incorporation of ancient DNA (aDNA) and stable iso-

tope data from subfossil specimens [23]. Here, we use stable

isotope and aDNA analyses to track the niche width and evol-

utionary history of apparent generalist lineages of killer

whales Orcinus orca.
2. Study system
Killer whales are marine top predators and as a species, are

known to consume a broad range of prey including species

of mammal, fish, bird and reptile [24]. However, several studies

have identified highly specialized populations that consume

a narrow range of prey [25,26]. For example, in the near

shore waters of the Northeast Pacific, there are two sympa-

tric ecotypes of killer whales, which are thought to have

non-overlapping prey preferences: one ecotype feeds on fish,

whereas the other feeds upon mammals [25,26]. These North

Pacific ecotypes are reproductively isolated, as indicated by

strong lineage sorting of mitochondrial DNA (mtDNA) and

strongly bimodal genotypic clustering. They therefore appear

to be at a late stage, or have even reached completion, of specia-

tion [27]. Phylogeographic and coalescent analyses using

complete mitogenomes suggest that sympatry between these

two North Pacific ecotypes arose from secondary contact fol-

lowing an allopatric phase [28]. Given this, one can speculate

whether foraging specialization and evolutionary divergence

were initiated during allopatry or upon secondary contact.

There is evidence that different killer whale populations

from elsewhere in their natural range, e.g. the Northeast

Atlantic, provide a suitable model for testing the potential

that evolutionary divergence can be initiated and progress in

sympatry, and in doing so, provide broader insights into the

evolutionary outcomes of niche variation at a more general

level. In the Northeast Atlantic waters, some degree of eco-

logical diversification between groups, and relative seasonal

specialization within groups, have been reported [29–31].
However, in contrast to the findings from studies in the Pacific,

individuals sharing the same mtDNA haplotype were found

to have very different d15N stable isotope values indicating

differences in relative trophic position [30]. This niche varia-

tion within a lineage could be the raw material needed for

adaptive radiation, and therefore the early stages of ecotype

formation and ultimately speciation [8]. To fully investigate

whether such niche variation has been present over evolution-

ary timescales, we compared isotopic values of killer whale

specimens, covering a temporal span from the early Holocene

to the present. The samples were collected from a relatively

small geographical area (�1000 km2) of the Northeast Atlantic,

predominantly the North Sea, which is a small proportion

of the natural range of killer whales (North Sea killer whales

have been photographically recaptured off Iceland [32],

approximately 1000 km away). In addition to using isotopic

values as an indicator of the degree of ecological divergence,

we further investigated the evolutionary outcomes of any

differences in ecology using two proxies of the stage of specia-

tion: the degree of lineage sorting of mitochondrial genomes

and genotypic clustering of microsatellite loci.
3. Material and methods
We sampled 23 subfossil killer whale bones and teeth recovered

by dredging or trawling from the Southern Bight of the North

Sea or from archaeological sites in Southern Scandinavia

(figure 1). Four of the subfossils were radiocarbon dated to

2810+ 75; 3250+ 95; 3900+ 40 and 6800+ 115 14C years BP.

Others were dated based on archaeological context, for example

presence within Iron Age middens. All were estimated to orig-

inate from the Holocene and to be greater than 1000 years old.

Species identification was confirmed by PCR-based Sanger

sequencing of the hypervariable 50 region of the mtDNA control

region of all samples as per reference [30]. These were compared

with 20 bones or teeth from more recent museum specimens

(1865–1995), which originated from the North Sea and adjacent

waters (figure 1) and were used in a previous study [30].

http://rspb.royalsocietypublishing.org/
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(a) Estimating isotopic niche width
Stable isotope ratios from tooth or bone can provide a relative

measure of the long-term average consumption of different prey

resources and variance in these isotopic ratios among individuals

can be a useful proxy of the population’s niche width [33,34].

We only included bone collagen and tooth dentin from animals

estimated, based on size to be older than the post-weaning age

of 4 years [35] and avoided sampling the enamel crown and

outer dentin growth layers deposited during nursing. Nitrogen

and carbon isotope analyses were performed simultaneously

using continuous-flow isotope ratio mass spectrometry under

the same conditions and degree of accuracy as reference [30]. To

compare isotope values with more recent samples, we applied a

correction to d13C estimates to account for the ‘Suess effect’

caused by the burning of fossil fuels over the past 150 years.

Time-dependent corrections of 20.005‰ per year and 20.022‰

per year were applied to periods 1860–1960 and 1960–present,

respectively. Isotopic niche width was estimated using a Bayesian

approach based on multivariate, ellipse-based metrics [36], as this

method is robust for comparisons between small and different

sample sizes and identifies differences in the niche width of ‘typi-

cal’ members of the population and may not incorporate outlier

individuals. The analysis was implemented in the R package

SIAR [37] to generate standard ellipse areas (SEAB): a bivariate

equivalent to standard deviation and a corrected measure for

small sample sizes (SEAC). The area within an ellipse is defined

by a subsample (40%) of bivariate data, in this case, the ratios of

nitrogen 15N/14N (d15N) and carbon 13C/12C (d13C), that best

explain the covariance, and by resampling multiple times esti-

mates an error term associated with this value [36]. Statistical

significance of differences in SEAC between sample sets was

based on the proportional outcome of 106 repeat measures.

The differences in amino acid composition among different

tissues can lead to large differences in trophic discrimination

[38]. For example, d13C in bone collagen is typically enriched

by 4–5‰ relative to the diet, in comparison to a 0.9–1.9‰

enrichment typical for epidermal tissue [38]. We therefore

applied a correction factor of þ4 to blood, epidermal and

muscle d13C values in figures comparing with tooth dentin and

collagen d13C values. Repeat sampling of tooth and bone

material from the same individual indicated a difference of

0.2‰ in d13C and 0.3‰ in d15N and therefore that these two

tissues were directly comparable.
(b) Mitogenome sequencing and phylogenetic analyses
Mitochondrial DNA sequencing was performed to assess the

degree of lineage sorting based on isotopic niche. A previous

study had found a broad range of isotopic values within some

North Atlantic lineages [30]. However, these lineages were defined

using mtDNA control region sequence data. Subsequent studies

using complete mitogenome sequences from a global dataset of

killer whales have shown the control region to be a poor indicator

of phylogenetic relationships, while the coding genes of the mito-

genome evolve in a more ‘clock-like’ manner and provide high

phylogenetic resolution [27,39]. We therefore sequenced complete

mitogenomes to improve phylogenetic resolution.

DNA was extracted and purified as per reference [30]. Blank

extractions were included to every five samples to monitor for

contamination. To generate mitogenome sequences from recent

(less than 200 years old) and ancient (greater than 1000 years

old) samples, we used multiplexed DNA target enrichment

hybridization capture coupled to high-throughput sequencing,

using a published protocol [40] with a minor change, using heat

instead of NaOH to release the captured DNA from the beads.

Genomic DNA extract was built into blunt-ended libraries follow-

ing Meyer & Kircher [41]. Illumina sequencing libraries were built

on the DNA extracts using NEBNext (Ipswich, MA, USA) DNA
sample prep master mix set 1. Libraries were subsequently index

amplified for 15–20 cycles using Phusion high-fidelity master

mix (Finnzymes, Thermo Scientific, Finland) in 50 ml reactions fol-

lowing the manufacturer’s guidelines. The libraries were then

purified using MinElute PCR purification kit (Qiagen, Hilden,

Germany) and pooled equimolarly in to a total of 2 mg, at which

point they were ready for subsequent target enrichment.

To generate the bait for target enrichment, high-quality killer

whale DNA extract was amplified into four overlapping long-

range PCR products using primers LR2.1, LR2.2, LR3 and LR4

encompassing the whole mitogenome, following Morin et al.
[27]. Subsequently, these amplicons were converted into bait fol-

lowing Maricic et al. [40], after which target enrichment

proceeded on the pooled libraries following Maricic et al. [40].

The DNA concentration of the library eluted postcapture was

measured using a 2100 Bioanalyzer (Agilent Technologies, CA,

USA), then sequenced in subpartitions of single channels on an

Illumina HiSeq 2000 platform using SR 100 bp chemistry.

Illumina HiSeq 2000 reads were filtered with Adapter-

Removal [42], to remove adapter dimers as well as low-quality

stretches at the 30 ends. Filtered reads were then mapped to a

reference killer whale mitogenome (GU187176.1) using BWA

v. 0.5.9 [43], requiring a mapping quality of greater than 25.

Clonal reads were collapsed using the rmdup program of the

SAMTOOLS (v. 0.1.18) suite [44]. Ambiguously mapped reads

were also filtered out using SAMTOOLS and controlling for XT,

XA and X1 tags. Consensus mitogenome sequences were then

reconstructed using bam files, which were aligned in GENEIOUS

(Biomatters Ltd) [45].

Phylogenetic relationships based on the sequence data were

estimated using maximum-likelihood (ML) methods performed

using webserver-based PHYML v. 3.0 [46], using the HKY þ
Inv þ gamma model selected using JMODELTEST v. 1.1 [47]. The

transition/transversion ratio, the proportion of invariable sites,

the gamma distribution and the starting tree, estimated using a

BIONJ algorithm were also estimated by PHYML v. 3.0. The

reliability of the optimized tree was estimated using 100 boot-

strap replicates. To allow a heuristic visualization of lineage

sorting based on trophic position, d15N isotopic values were trea-

ted as continuous characters and their ancestral state for these

characters was inferred using Mesquite v. 2.75 [48], with the

‘Trace Character Over Trees’ module applying the parsimony

reconstruction method.

(c) Microsatellite genotyping and population
structure analysis

To assess whether an evolutionary outcome of niche variation

in this study system was assortative mating based on dietary

preferences, we conducted an individual-based analysis of popu-

lation structure. As DNA from degraded DNA sources can be

prone to genotyping errors, for example allelic dropout, we

used only high-quality DNA from modern skin biopsies for

this analysis. DNA was extracted from biopsies of killer whales

sampled either while feeding on fish or had stranded and

found to have fish remains in their stomach, and from a group

of six individuals taken by aboriginal hunters off Ammasalik,

East Greenland, whose combined stomach contents included

four harp seals and a hooded seal, but which also had worn

teeth as observed in fish-eating individuals (see the electronic

supplementary material, figure S1 for a map of sample locations).

Individuals were screened with 12 polymorphic microsatellite

loci (D08, D22, EV1, EV37, FCB4, FCB5, FCB11, FCB12, FCB17,

KWM2a, Ttru04 and Ttru11) following the methods, loci and

QC approaches, outlined in Foote et al. [49] and compared with

previously published genotypes [49]. A Bayesian model-based

clustering algorithm performed by STRUCTURE v. 3.2.4 [50]

was used to infer population structure and probabilistically

http://rspb.royalsocietypublishing.org/
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assign individuals to K clusters minimizing Hardy–Weinberg

disequilibrium between loci within groups, without a priori

knowledge of population units and limits. A series of five repli-

cate independent runs were conducted for each value of K, set

between one and five, using the correlated allele frequencies

and admixture models. Each run used 106 iterations after a

burn-in length of 105 iterations. To check for convergence of

the Markov chain Monte Carlo, we compared the consistency

of the results of the five replicates at each value of K.
–17 –16 –15 –14 –13 –12

12

14

d13C (‰)

d15

Figure 3. SEAB representation of isotopic niche width that is bivariate equiv-
alent to s.d. in univariate analysis of ancient (black) and recent (red) North
Sea killer whales and for Norwegian killer whales seasonally specializing on
herring (green).
4. Results and discussion
(a) Niche variation determined from d15N and d13C
The d15N values of both subfossil and recent samples

spanned a range of approximately 8‰, matching the differ-

ence in mean d15N values of known prey items for North

Sea killer whales (figure 2). While the range of d15N values

appears to be similar between time periods, there is a greater

spread of d13C values in the recent samples (figure 3). SEAB

calculated using Bayesian inference and a corrected value

for SEAC indicate a significant ( p , 0.01) increase in isotopic

niche width from SEAB ¼ 5.4‰2 (SEAC ¼ 5.7‰2) for the sub-

fossil samples to SEAB ¼ 11.0‰2 (SEAC ¼ 11.6‰2) for the

recent samples (figure 3). For comparison, the SEAC based

on published isotopic values measured from skin of killer

whales sampled in the Norwegian fjords when they are sea-

sonally specializing on herring [29,31] was 0.62‰2 (figure 3);

a significantly ( p , 0.01) narrower niche width than both the

ancient and recent North Sea samples. The 50, 75 and 95%

Bayesian credible intervals based on 106 re-samplings are

shown in the electronic supplementary material, figure S2.

There was overlap of isotopic niche between sampling periods;

3.1‰2 of the 5.7‰2 SEAC of the ancient subfossil overlapped

with the SEAC of the modern samples. Therefore, isotopic

niche variation has been present in North Sea killer whales

over timescales approximating to between 200 and 450 killer
whale generations, as estimated from the age of the subfossil

samples and assuming a generation time of 15 years [52].

Given the large geographical ranges across which killer

whales typically travel, for example some North Sea kil-

ler whale groups have been photographically recaptured off

Iceland [32], it is likely that some isotopic variation arises

from geographical differences in foraging locations and that

these have shifted during the Holocene. The mean d15N of

Atlantic herring ranges from 11.8 off of Iceland to 13.0 in

the North Sea [31]. Consequently, a previous study measur-

ing isotope values of killer whale skin biopsies found that

there are significant differences in d15N between Iceland

and Norway [31]. This difference in mean d15N between

http://rspb.royalsocietypublishing.org/
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the two locations was approximately 2‰, much less than the

variation in d15N values found in this study. The samples all

originated from the Holocene: a period when there was rela-

tively little variation in d13C of the baseline carbon source in

the North Atlantic [53]. There was no significant temporal

trend in isotopic values between 1865 and 1995, despite

changes in agricultural practices that could have led to a

shift in baseline nitrogen values (see the electronic sup-

plementary material, figure S3). Therefore, temporal and

geographical variation in baseline isotopic values do not

appear to explain much of the observed variation in isotope

values among specimens in this study.

Among-individual differences in the diet likely explain a

large part of the observed isotopic variation [30]. This is con-

sistent with the stomach contents of individuals, wherever

available. For example, the two recent specimens from

Denmark in figure 1 had stomach contents of either marine

mammal remains or fish remains, consistent with their dispa-

rate isotopic values indicating differences in mean trophic

position. Isotopic niche values based on measurements

from tooth and bone tissue represent the cumulative intake

of different components of the diet over the years that the

sampled bone material and teeth growth layers were depos-

ited [32–35]. Therefore, differences among individuals in

isotopic niche indicate there is interindividual variation in

the mean proportions of different prey items within the

diet, but these individual preferences may not be discrete,

and we do not have a measure of how specialized each indi-

vidual is. Measurement of isotopic values from different

growth layers within a tooth may provide an indicator of

within-individual variation, e.g. [35]. In the absence of this

within-individual data, we refer to these among-individual

differences in the long-term mean uptake of prey items,

inferred from differences in isotopic niche, as relative special-

ization. The tooth wear, which is prevalent in the specimens

used in this study (figure 1), suggests some overlap in either

the diet and/or foraging method [30].

(b) Lineage sorting of mitogenome sequences based on
isotopic values

We generated 29 new mitogenome sequences (GenBank acces-

sion numbers KF418372–418393) including nine from recently

collected epidermal samples, 16 from tooth and bone speci-

mens in museum collections (less than 200 years old) and

four from subfossils (greater than 1000 years old). Following

QC and filtering, mean sequence coverage ranged from 9 to

184� coverage and only nucleotide positions with a read

depth of greater than 5� coverage were included. Consensus

sequences from Illumina reads matched 100% with Sanger

sequenced fragments from the same sample. The generated

sequences resulted in the discovery of 22 new mitogenome

haplotypes, all nesting within clades identified by previous

analyses of 144 globally distributed modern samples [27,49]

(see electronic supplementary material, figure S4).

The degree of lineage sorting of mitogenomes provides a

proxy of the stage of speciation and insights into the trans-

mission over time of foraging preferences. Tracing d15N and

d13C isotopic values as continuous character traits over the

ML phylogeny suggested that there has been multiple diversi-

fications in isotopic niche (figure 4). There was also an

indication of relatively stable transmission of isotopic niche

along matrilineal lines within some clades, in particular those
that were dominated by samples from Norway. However, it

should be noted that these Norwegian samples were collected

over a small geographical area, over a short-time span and

were skin samples, therefore giving a short-term dietary signa-

ture. There were clear outlier individuals within some clades,

typically those containing tooth and bone samples from the

North Sea. For example, the second clade in the phylogeny con-

tains two samples with very similar and relatively high N15

values, one from Shetland and one from the Kattegat that

had marine mammals in its stomach. In the same clade are

an individual from the Humber Estuary in England that had

an isotopic signature consistent with a mainly pisciverous

diet and an individual biopsy sampled from a pelagic trawler

in the North Sea while it was feeding on mackerel escaping

from the nets. Given the short branch lengths, this incomplete

lineage sorting is consistent with relatively recent divergences

in niche by some of the sampled lineages.

(c) Evidence for assortative mating
A predicted evolutionary outcome of long-term niche variation

is assortative mating and potentially, speciation [8,14]. We

tested whether there was evidence for assortative mating

between a group that had fed on mammals prior to sampling

and individuals that had been feeding on fish when sampled.

The Bayesian model-based clustering algorithm performed

by STRUCTURE v. 3.2.4 [50] assigned the group from

Greenland with seals in their stomach unambiguously to a

population consisting mainly of herring-eating killer whales

distributed from Norway to Iceland, across a range of popu-

lation estimates from K ¼ 2–5 (figure 5). Incorporating

multiple individuals from the same group can bias the analysis

and misinterpret social structure as additional population

structuring owing to the close relatedness and sharing of alleles

within the group [49]. However, even at K ¼ 5 (not shown), the

seal-eating group was not distinguished from the other indi-

viduals within this predominantly fish-eating population.

Therefore, although based on samples from only one group,

our results do indicate panmixia (of neutral nuclear DNA

markers) between at least some groups that feed on fish and

some groups whose diet includes seals.

(d) Generalism, trade-offs and niche variation
Generalist individuals are expected to have higher fitness than

specialists as they have access to a wider range of resources,

and individual niche width is expected to expand to match

the population niche width, but only if there are no biomecha-

nical, physiological, cognitive or other constraints that restrict

the variety of different prey resources an individual can effi-

ciently consume [6,7,54]. In nature, these constraints appear

to be common and consequently, niche width of generalist

populations has been found to be owing to ecological differ-

ences among relatively specialized individuals [55]. These

constraints may also lead to reduced hybrid fitness and pro-

mote assortative mating [8].

One potential constraint of foraging for all available prey

resources in killer whales is that different hunting strategies

are required to efficiently hunt either marine mammals or

fish [24,26,56–60]. The foraging strategies of mammal-

eating killer whales are adapted to hunting large, single

prey items with acute hearing, and they therefore typically

travel in small groups, with a mean group size of three to

five animals and forage in silence [24,26,56–60]. By contrast,
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the foraging strategies of fish-eating killer whales are

adapted to hunting smaller, clustered prey with poor

hearing, and therefore form a wide range of group sizes

[24,26,60] and typically vocalize at a higher rate than

mammal-eating killer whales [56–59]. However, the plastic

nature of these phenotypic traits associated with each
foraging strategy allows switching between strategies [61].

As noted above, the presence of tooth wear suggests that

there is some overlap in the diet of North Sea killer whales.

Additionally, if phenotypic traits under ecological selection

are transmitted through matrilineal cultural inheritance

alone and are not genetically heritable, then there would be
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no cost to gene flow between relative specialists within these

sympatric North Atlantic lineages.
5. Conclusion
Our results have implications for understanding speciation.

Our study system provides a useful example of long-term

niche variation and its evolutionary outcome. The shallow

ecological cline indicated by isotopic values and apparent

overlap in prey items consumed, in addition to the incom-

plete lineage sorting of mitogenomes (based on isotopic

niche) and lack of evidence for assortative mating suggests

that any progress towards speciation is still at an early

stage in this system [20]. This is in contrast to killer whale

ecotypes in the North Pacific which fall either side of an eco-

logical step, and for which complete lineage sorting of

mitogenomes and strongly bimodal genotypic clustering
indicate that speciation is at a late stage or has reached com-

pletion [27]. There is evidence that sympatry in North Pacific

ecotypes arose from secondary contact following a long allo-

patric phase [28]. This proposed period of separation would

have allowed the divergence of both genetically and cultu-

rally heritable traits, and reproductive isolation may have

been consolidated upon secondary contact through reinforce-

ment [28]. The pattern of diversification in killer whales

therefore reflects similar findings in other taxa, where pro-

gress along the speciation continuum varies in rate and

directionality resulting in variation among study sites in the

development of discrete or continuous phenotypes [8,21,62].

While our study is the first to investigate niche variation

from such a lengthy temporal perspective, our results add

to a growing body of literature that suggest sympatric

speciation owing to niche variation is difficult to achieve.

For example, niche variation has led to assortative mating

but no associated phenotypic divergence in threespine
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stickleback Gasterosteus aculeatus [11], and niche variation has

led to weak divergence of adaptive phenotypic traits (beak

morphology) but no association with neutral genetic markers

in Darwin’s medium ground finch Geospiza fortis [12].

Perhaps the ecological differences among individuals in these

empirical studies are not large enough to drive disruptive selec-

tion and/or assortative mating in the rapid manner predicted

by some theoretical models [63]. Additionally, in the absence of

a strong link between ecology and reproductive isolation,

sympatric speciation is predicted to be extremely slow [64].
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