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Killer whales (Orcinus orca) are among the most highly polychlorinated biphenyl
(PCB)—-contaminated mammals in the world, raising concern about the health consequences
of current PCB exposures. Using an individual-based model framework and globally
available data on PCB concentrations in killer whale tissues, we show that PCB-mediated
effects on reproduction and immune function threaten the long-term viability of >50% of
the world’s killer whale populations. PCB-mediated effects over the coming 100 years
predicted that killer whale populations near industrialized regions, and those feeding at
high trophic levels regardless of location, are at high risk of population collapse. Despite a
near-global ban of PCBs more than 30 years ago, the world’s killer whales illustrate the

troubling persistence of this chemical class.

he widespread industrial use of polychlori-

nated biphenyls (PCBs) during the 20th cen-

tury led to ubiquitous contamination of the

biosphere, with substantial harm among

different wildlife populations (7). PCBs are
toxic anthropogenic compounds shown to impair
reproduction, disrupt the endocrine and immune
systems, and increase the risk of cancer in verte-
brates (2, 3). National and international regulatory
actions succeeded in reducing PCB contamination
of the environment primarily in the first decades
after the bans (4); however, PCB concentrations
remain high in many long-lived wildlife species
because of their environmental persistence and
efficient biological cycling (mother-calf transfer),
as well as dietary shifts in some species over time
to more contaminated prey (2, 5). For example,
PCB concentrations are exceedingly high in the
tissue of high-trophic level killer whales (Orcinus
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orca) and other dolphin species (5, 6). It has been
suggested that high PCB concentrations in Killer
whales may be contributing to observations of
low recruitment and population decline, poten-
tially leading to local extinctions (5, 7). To date,
only one study, focusing on resident killer whales
in western Canada, has investigated population
risk from PCB exposure (8). Exposure modeling
predicted protracted health risks in these resi-
dent populations over the next century, under-
scoring the vulnerability of this long-lived species
to PCBs (9). With many killer whale populations
facing growing conservation pressures, there is
an urgent need to assess the impact of PCBs on
global killer whale populations.

We compiled available data on blubber PCB
concentrations [ZPCBs, mg/kg lipid weight (Iw)]
in Killer whales from populations around the world
and compared these to established concentration-
response relationships for reproductive impair-
ment and immunotoxicity-related disease mortality
using an individual-based model framework
(8, 10). This model incorporates published Killer
whale fecundity and survival data to construct a
stable age-structured baseline population. The
model then simulates the accumulation and loss
of PCBs in blubber through placental and lacta-
tion transfer to the fetus and calf, as well as prey
ingestion after weaning. Simulated PCB concen-
trations are then evaluated against concentration-
response relationships for calf survival and immune
suppression. Immunity is linked to survival prob-
ability based on relationships between immune
suppression and disease mortality (17). We then
forecast the predicted effects of PCB exposure on
killer whale population growth around the world
over the next 100 years.

PCB concentrations in killer whales around
the world reflect proximity to PCB production and
usage, as well as diet and trophic level (Fig. 1 and
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table S1). Global PCB production (1930 to 1993)
was estimated to be between 1 and 1.5 million
metric tons (tonnes), and mostly occurring in the
United States (~50%), Russia (~13%), Germany
(~12%), France (~10%), and the United Kingdom
(5%) (12, 13). The global manufacture of PCBs cor-
responded well with the observed pattern of PCB
levels in killer whale populations, which ranged
widely from lowest values in Antarctica, <10 mg/
kg Iw (14), to values above 500 mg/kg Iw in indi-
viduals near the highly industrialized areas of
the Strait of Gibraltar, the United Kingdom, and
the Northeast Pacific (5, 15, 16). Diet is an impor-
tant contributor to PCB accumulation in killer
whales via biomagnification across trophic levels,
resulting in sharp differences between populations
feeding on marine mammals, tuna (Scombridae),
and sharks (Selachimorpha) and those feeding
on lower-trophic level fish (Fig. 1 and table S1).
This is exemplified in the Northeast Pacific where
marine mammal-eating Bigg’s Killer whales carry
10- to 20-fold higher PCB burdens compared to
fish-eating northern residents, despite sharing the
same coastline (15, 17). Overall, females exhibit
lower blubber PCB levels than males because of
maternal sequestration to young during fetal de-
velopment and lactation (78, 19). Exceptions have
been reported in the most highly PCB-contaminated
populations, including in the United Kingdom,
Strait of Gibraltar (5), and Bigg’s individuals in
the Northeast Pacific (17), suggesting that PCBs
may be limiting successful reproduction and con-
sequently reducing the maternal loss of PCBs.
Model forecasting over the next 100 years shows
the large potential impact of PCBs on popula-
tion size and long-term viability of long-lived Killer
whales around the world (Fig. 2). Killer whale
populations with similar PCB levels were grouped
together and assigned to exposure groups (Fig. 2,
Cand D, and table S1) (10). The modeled reference
(unexposed) population grew by 141% [inter-
quartile range (25/75th) = 96.3 to 176.5%] over the
100-year simulation period. The least-contaminated
populations (group 1) included Alaskan residents,
Antarctica type C, Canadian Northern residents,
Crozet Archipelago, Eastern Tropical Pacific, and
Norwegian populations. These are estimated to
accumulate 1 mg/kg Iw of PCBs per year, result-
ing in median blubber concentrations of 7.9 (4.7
to 14.0) mg/kg Ilw and effects causing a popula-
tion decrease of 8.8% (4.1 to 25.3%) or 15.4% (3.5
t0 25.2%) relative to the reference population for
reproductive effects alone or combined reproduc-
tive and immune effects, respectively. However,
although relative population-level effects were
observed for these low-exposed populations, the
model still predicts a net doubling in their pop-
ulation size over 100 years (Fig. 2C and figs. S2 and
S3). Annual PCB accumulation rates of 3, 6, 9, 15,
18, and 27 mg/kg are represented by exposure
groups 2 through 7, which have incrementally
greater blubber PCB levels (Fig. 2C and table
S1). Alaskan offshore, Faroe Islands, and Iceland
whales (group 2) have similar PCB burdens (13.9
to 41.5 mg/kg Iw) and are predicted to have modest
population growth over the 100-year simulation
period, albeit at a reduced rate relative to the
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Fig. 1. Global PCB concentrations in killer whales. (A) Conceptual
model of PCB bioaccumulation and magnification, leading to elevated
PCB concentrations in killer whale populations. (B) Global overview
of PCB concentrations in killer whale blubber (ppm, parts per million).
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Light and dark green circles represent males and females, respectively.
Also shown is population density—normalized cumulative global

usage of PCBs per country from 1930 to 2000 (12). Number labels
indicate populations with measured PCB concentrations (table S1).

Table 1. Global assessment of population-level risk from PCB exposure. Risk categories were set based on predicted growth rates () and significant
difference by using a one-sample t test against a reference of no growth (A = 1): low risk (A > 1, little to no effect on population growth), moderate risk
(A =1, stagnant population growth), high risk (A < 1, population decline).

PCB risk Population Location Population size Protection
status
Low Alaska offshore North Pacific >200% None*
(L >1) Alaska resident North Pacific 2347* None*
Antarctica type C Southern Ocean Unknown Unknown
Northeast P?CIﬂC Northeast Pacific 290" Threatened?
North resident
Crozet Archipelago South Indian Ocean 37-98* Unknown
Eastern Tropical Pacific Tropical Pacific 8500* Unknown
Faroe Islands Northeast Atlantic Unknown Unknown
Iceland North Atlantic 3768 None$
Norway Northeast Atlantic 500-1100!" Unknown
Moderate Alaska transient North Pacific 587* None/Depleted*
(L =1) Canada South resident Northeast Pacific 78t Endangered?
High Brazil Southwest Atlantic Unknown Unknown
(L <1) Northeast Pacific Bigg's Northeast Pacific 521* None*/Threatened?
Canary Islands Atlantic Ocean Unknown Unknown
Greenland North Atlantic Unknown None
Hawaii Tropical Pacific 101* None*
Japan Northwest Pacific Unknown Unknown
Strait of Gibraltar Mediterranean 361 Vulnerable
United Kingdom Northeast Atlantic <9# None

*National Oceanographic and Atmospheric Administration (NOAA) stock assessment reports (www.fisheries.noaa.gov/species/killer-whale); AT1 transients in Alaska are

a subgroup considered depleted under the U.S. Marine Mammal Protection Act.

default.asp?lang=en&n=24F7211B-1). 1(27).

reference population; modeled PCB effects on re-
production alone or in combination with immune
suppression resulted in a population reduction
of 22.6% (14.0 to 38.3%) or 40.5% (32.6 to 48.7%).
Alaskan transient and Canadian Southern resident
populations have similar PCB burdens (group 3:
28 to 83 mg/kg lw), and PCB effects are predicted
to inhibit population growth or cause a gradual
decline of ~15% (4.3 to 33.9%) for reproductive or
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§28).  1(29).  9(30).  #(5).

combined effects, respectively. These represent me-
dian reductions of 54.7 and 64.7% relative to un-
exposed populations. Greenland, Canary Islands,
Hawaii, Japan, Brazil, Northeast Pacific Bigg’s,
Strait of Gibraltar, and U.K. populations all possess
PCB levels above 40 mg/kg Iw (Fig. 2C), and this
level of exposure is predicted to cause population
declines at various rates depending on the expo-

sure group. Populations of Japan, Brazil, North-
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tGovernment of Canada, Species at Risk Public Registry (www.sararegistry.gc.ca/

east Pacific Bigg’s, Strait of Gibraltar, and United
Kingdom are all tending toward complete col-
lapse in our modeled scenarios.

To quantify and compare the global risk of
PCB exposure in Killer whales, we used population
trajectories from the model to calculate potential
annual population growth rates (A). The achievable
growth rates, incorporating combined PCB effects
on both reproduction and immune function, were
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Fig. 2. Simulated killer whale popula-
tion size in response to reproductive 100
and immune effects of PCB exposure.
(A) Calf survival as a function of =
maternal adipose PCB Iw concentration. &2
(B) Immune suppression as a function
of blubber PCB Iw concentration.
(C) Simulated effect of PCB exposure
on population size (% initial size, No)
of killer whales over the next 100 years. —-100
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effects on reproduction and immunity (blue). Bold lines and shading represent the median and interquartile range. Each plot represents a
different PCB exposure group noted by the interquartile range of PCB concentrations in each panel (10). (D) Annual population growth rates (i)
for modeled populations according to exposure group. Symbols and error bars represent the median and interquartile range.

at or below the growth threshold (A = 1) for 10 of
the 19 populations for which information on PCB
exposure is currently available (Fig. 2D and Table 1).
These results suggest that chronic exposure to per-
sistent PCBs has the potential to affect long-term
population viability in more than half of all studied
killer whale populations. Of these, Alaskan tran-
sient and Canada Southern resident populations
are at moderate risk of population-level effects
(A =1), whereas Brazilian, Northeast Pacific Bigg’s,
Canary Islands, Greenlandic, Hawaiian, Japanese,
Strait of Gibraltar, and U.K. populations are at
high risk of collapse over the next 100 years. The
model predicted low PCB risk and stable pop-
ulation growth (A > 1) for the remaining nine pop-
ulations (Fig. 2D and Table 1).
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Our global assessment of PCB-related effects
on the long-term viability of killer whale popula-
tions represents a fundamental advancement in
our understanding of population impacts from
chronic exposure to these legacy chemicals in a
long-lived marine apex predator. More than
35 years after the onset of the ban on PCBs, killer
whales still have PCB concentrations reported to
be as high as 1300 mg/kg Iw (20). Killer whales
once thrived in all oceans of the world, but only
those in the less-contaminated waters of the Arctic
and Antarctic today appear to be able to sustain
growth (Table 1) (7, 21). We had no PCB data for
killer whales in the Gulf of Mexico, but even before
the Deep Water Horizon oil spill in 2010, estimates
for killer whales in the region are consistent with a
progressive population collapse from 277 individ-
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uals in 1991-1994, 133 in 1996-2001, 49 in 2003-
2004, and only 28 in 2009 (22). Prey switching
from low to high PCB-contaminated prey sources
(e.g., fish to seals) has been documented in some
killer whale populations like Northeast Scotland
(United Kingdom) and Greenland (23, 24)), which
is likely to have important consequences for PCB
exposure in these already vulnerable populations.
Prey switching is likely a function of prey avail-
ability as fish stocks and seal populations fluctuate
over time (23, 24). Our finding that a single
chemical class (PCBs) may represent a substan-
tial conservation threat to Killer whales around
the world raises concerns about the potential for
other persistent contaminants to generate addi-
tional toxic injury in long-lived, high-trophic level
aquatic species. Indeed, a long list of additional
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known and as yet unmeasured contaminants are
present in Killer whale tissues, including biolog-
ically active compounds like perfluoroalkyl acids,
brominated and organophosphate flame retard-
ants, and polychlorinated naphthalenes (25), and
although these are less well characterized, they may
contribute to reproductive and immune failure or
other health endpoints not included here.

The status-quo efforts to protect killer whales
from conservation threats are likely to be impeded
because PCBs have remained at levels associated
with adverse health effects in at-risk populations
over the past decades (5, 7, 9). Concerted efforts
beyond those listed under the Stockholm Con-
vention on Persistent Organic Pollutants (POPs)
are urgently needed to reduce PCB exposure in
vulnerable wildlife populations. It is estimated
that more than 80% of global PCB stocks are
yet to be destroyed, and at present rates of PCB
elimination, many countries will not achieve the
2025 and 2028 targets as agreed upon under the
Stockholm Convention on POPs (26). Although
killer whale populations face other anthropogenic
stressors such as prey limitation and underwater
noise (2I), our assessment here clearly demon-
strates the high risk of collapse for many Killer
whale populations as a consequence of their PCB
exposures alone.
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PCB—-still a problem

Until they were recognized as highly toxic and carcinogenic, polychlorinated biphenyls (PCBs) were once used
widely. Their production was banned in the United States in 1978, though they are still produced globally and persist in
the environment. Persistent organic compounds, like PCBs, magnify across trophic levels, and thus apex predators are
particularly susceptible to their ill effects. Desforges et al. looked at the continuing impact of PCBs on one of the largest
marine predators, the killer whale. Using globally available data, the authors found high concentrations of PCBs within

killer whale tissues. These
high trophic levels and are

are likely to precipitate declines across killer whale populations, particularly those that feed at
the closest to industrialized areas.
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