Common Minke Whale

Updated: June 2018

The common minke whale is the smallest of the balaenopterids, or rorquals. It attains a length of 8-9 m and a weight of about 8 tonnes in the North Atlantic. As with all balaenopterids, the females are somewhat larger than the males. Common minke whales are black or dark grey dorsally and white on the ventral side. A transverse white band is characteristic for the species in the Northern Hemisphere. With a worldwide distribution, it is the most common of the rorquals.

Summer distribution of common minke whales in the North Atlantic, showing sightings and effort from all North Atlantic Sightings surveys, 1987 - 2015, as well as 2007 CODA and SNESSA surveys. Not all areas were surveyed each year.
minke-assessment-07122016

Abundance

The most abundant baleen whale. Over 180,000 in the North Atlantic (NAMMCO 2011b, IWC 2010).

Distribution

Common minke whales carry out extensive seasonal migrations, moving from wintering areas in the tropics or sub-tropics to higher latitude feeding areas in the summer. Major summering areas include the North, Norwegian and Barents Seas, the coastal waters of Iceland, east and west Greenland, Newfoundland and Labrador, and the northeastern coast of the USA.

Relation to Humans

Whaling by Norway, Iceland and Greenland takes over 700 minke whales per year. All of this harvest is used for food.

Conservation and Management

International management regime by the International Whaling Commission and NAMMCO. All stocks are considered to be in a healthy state and not threatened by present levels of exploitation.

minke whale
© NOAA
Minke whale surfacing in calm blue sea, Bjornoya. Photo: George McCallum / Whalephoto.com

Minke whale surfacing in calm blue sea, Bjørnøya. © George McCallum / Whalephoto.com

Latin: Balaenoptera acutorostrata Lacépède, 1804

Icelandic: Hrefna
Faroese: Sildreki
Greenlandic:Tikaagullik
Norwegian: Vågehval
English: Common minke whale, Northern minke whale, lesser rorqual, little piked whale, pikehead, sharp headed finner
French: Petit rorqual, baleine à bec, baleinoptère ou rorqual à museau pointu
Spanish: Ballena minke, rorcual menor, rorcual enano
Danish: Vågehval, sildepisker

Lifespan

Up to 60 years

Average size

8-10 m long, 9 tonnes in the Northern Hemisphere. Females are larger

Productivity

One calf probably every year from 7-8 years of age

Feeding

Lunge-gulping’ on euphausiids and a variety of shoaling fish including herring, capelin and cod

Migration

No regular north-south migration, but shifts in latitudinal abundance with season

General Characteristics

The common minke whale is the smallest species of the rorqual family, also called balaenopterid family. It is also the most common of all baleen whale species.

 Photo: Marine research Institute, Iceland

© Marine and Freshwater Research Institute, Iceland

At sea

The body is relatively robust, especially compared to the other rorquals. The head is very acute in shape and the rostrum fairly flat, which gives the nickname “pikehead”. The dorsal fin is relatively tall and falcate, located two-thirds back along the body.

The uncommon sight of two common minke whales off Norway. Minke whales are most often seen alone in the North East Atlantic. Photo: K.A. Fagerheim, Institute of Marine Research, Norway.

The uncommon sight of two common minke whales off Norway. Minke whales are most often seen alone in the North East Atlantic. © K.A. Fagerheim, IMR, Norway.

Common minke whales are black or dark grey dorsally and white on the ventral side, with a pale chevron on the back behind the head extending down onto the flanks. A transverse white band on the flippers is characteristic for the species in the Northern Hemisphere. The blow is low, rising only to about 2–3m, very inconspicuous and rarely visible in the North Atlantic. Common minke whales do not raise their flukes when diving, although the back is well arched. Many of them are very inquisitive and can approach vessels. They can be quite fast swimmers.

From a distance, common minke whales can be confused with bottlenose whales (and some other beaked whales), but the latter have bulbous heads and defined beaks, while the common minke’s head is sharply triangular. Also in the North Atlantic, common minke whales are usually solitary, while beaked whales appear generally in groups.

Size

Males and females are very similar in their general appearance, but females are somewhat larger than males. They attain a length of 8–9 m and a weight of about 8 tonnes in the North Atlantic, while they are slightly larger in the southern hemisphere.

Watch common minke whales swimming off the coast of Scotland

Listen to their calls off Eastern Canada (NOAA)

Life history

Common minke whales reach sexual maturity at an age of 5 to 7 years (NAMMCO 1999), and live as long as 42 years in the North Atlantic (Audunsson et al. 2013). They are essentially annual breeders, with most mature females becoming pregnant every year. Mating occurs in the late winter and gestation lasts about 10 months, with calves born in low latitudes during the winter (Martin et al. 1990). While the mating strategies of common minke whales are not well known, there is evidence of sexual segregation during the summer, with the larger females reaching higher latitudes than the smaller males. This has implications for management, as much of the catch in northern areas can be composed of females. For example, the proportion of females in the coastal West Greenland harvest ranges between 71% and 78% (Laidre et al. 2009).

Feeding

Common minke whales feed on a wide variety of fish and invertebrates. In the North Atlantic, they consume mainly krill (Thysanoessa spp. and Meganychtiphanes spp.), herring (Clupea harengus), capelin (Mallotus villosus), sandeel (Ammodytidae), cod (Gadus morhua), polar cod (Boreogadus saida), haddock (Melanogrammus aeglefinus), as well as other species of fish and invertebrates (NAMMCO 1998). The diet varies both by location and over time. In the Northeast Atlantic, krill dominate the diet in far northern areas, whereas capelin, herring and haddock become more important further south in the Norwegian Sea and along coastal Norway. Sandeel and mackerel become more common in the diet in southern areas such as the North Sea (Winsland et al. 2007) In the Central Atlantic, capelin appears to make up a larger part of the diet, but herring, sandeel and cod are also important (Víkingsson et al. 2013). Interannual variations in diet composition, probably reflecting prey availability, have been noted in the Northeast Atlantic (Haug et al. 1999, Winsland et al. 2007) and around Iceland (Víkingsson et al. 2013).

Stomach contents of a common minke whale off Iceland, with sandeels. © Marine and Freshwater Research Institute, Iceland.
Stomach contents of a common minke whale off Iceland, with sandeels. © Marine and Freshwater Research Institute, Iceland.
Stomach contents of a common minke whale off Iceland, with haddocks. © Marine and Freshwater Research Institute, Iceland.
Stomach contents of a common minke whale off Iceland, with haddocks. © Marine and Freshwater Research Institute, Iceland.

Like other baleen whales, common minke whales arrive in the summer feeding areas in a relatively lean condition but accumulate blubber rapidly over the summer. Christiansen et al. (2013), using data from whales taken in the Icelandic common minke whale harvest, determined that mature common minke whales accumulated about 0.5 cubic metres, or nearly half a tonne, of blubber over the summer feeding season. This blubber serves as an energy store for migration and reproduction in southern areas where less food is available for common minke whales.

Multi-species interactions

Common minke whales are very important predators in the marine ecosystem, particularly in the Northeast and Central Atlantic stock areas. They are estimated to consume more than 1.8 million tonnes of prey annually in the northern Northeast Atlantic stock area (NAMMCO 1998), much of which is commercially important species of fish such as herring, cod and haddock. This consumption is similar in magnitude to the total commercial fishery for pelagic fish in the area (Toresen et al.1998). The common minke whale is the most important marine mammal predator on fish in Icelandic shelf waters, consuming about 1 million tonnes of fish per year (Sigurjónsson and Vikingsson 1997). Multispecies modelling has indicated that these levels of consumption may have important implications for the yield of commercial fisheries in the northeast and central Atlantic (NAMMCO 1998; Stefánsson et al.1997), however this modelling is still at an early stage. The effects of multi-species interactions may be counter-intuitive: for example, Lindstrøm et al. (2009), using a multi-species model for the Barents Sea including cod, capelin, herring and common minke whales, suggested that increased predation by common minke whales would actually have a positive effect on the capelin stock, even though capelin were a major food item for the whales. This occurred because common minke whales also consume cod, which are a major predator on capelin.

Predation

Common minke whales are themselves preyed upon by humans, killer whales (Orcinus orca), and perhaps by large sharks in southerly latitudes. Numerous instances of killer whale predation have been observed (e.g. Ford et al. 2005). Pods of killer whales begin the hunt by chasing the common minke whale at speeds of 15-30 km/hr. In most cases, the common minke whale can maintain this speed for a longer time than the killer whales and gradually outdistances them. However, if the common minke whale is confined in a bay or otherwise unable to escape, the killer whales kill it by repeatedly ramming it or holding it underwater (Ford et al. 2005). The magnitude of killer whale predation on common minke whales and its importance at the population level is not known.

See killer whales attacking a common minke whale at Svalbard.

Parasites and epibiotics

Common minke whales are a host to a number of internal and external parasites, as well as commensals, and other epibiotic fauna. Off Iceland, indication of sea lamprey (Petromyzon marinus) attacks can be found of over half of the whales, while copepods such as Caligus elongatus and Pennella balaenopterae are also found on 10% of whales. The whale louse Cyamus balaenopterae, the pseudo-stalked barnacle (Xenobalanus globicipitis) and the goose barnacle (Conchoderma auritum) were also observed (Ólafsdóttir and Shinn 2013).

Epibiotics on common minke whale caught off Iceland a fixed Penella. © Marine and Freshwater Research Institute, Iceland.
Epibiotics on common minke whale caught off Iceland a fixed Penella. © Marine and Freshwater Research Institute, Iceland.
Epibiotics on common minke whale caught off Iceland- sea lamprey scars. © Marine and Freshwater Research Institute, Iceland.
Epibiotics on common minke whale caught off Iceland- sea lamprey scars. © Marine and Freshwater Research Institute, Iceland.

Behaviour

In the North Atlantic, common minke whales are usually solitary, while in the Southern Hemisphere, minke whales are usually seen in groups.The behaviour most characteristic of minke whales is lunge feeding. The whales swim at high speeds with their mouth open towards their prey, then close their mouth and expel the water with the prey being caught in the baleen plates.

Common minke whales do not raise their flukes when diving, although the back is well arched. Many of them are very inquisitive and can approach vessels. They can be quite fast swimmers.

Again like other baleen whales, common minke whales exhibit some sex segregation in their migratory habits, with females arriving earlier in the northern summering areas and moving further north than males (Laidre et al. 2009, Pampoulie et al. 2012). As a result, the catch early in the season and in far northern areas such as West Greenland tends to include a higher proportion of females than males.

Lunge feeding minke whale off Iceland. © Marine Research Institute, Iceland.

Lunge feeding common minke whale off Iceland. © Marine and Freshwater Research Institute, Iceland.

Distribution

Like other baleen whales, common minke whales carry out extensive seasonal migrations, moving from wintering areas in the tropics or sub-tropics to higher latitude feeding areas in the summer. The wintering areas are not well described, but the few satellite tag applications that have encompassed the fall migration suggest that common minke whales summer in the Northeast Atlantic and around Iceland, and spend the winter in the southern North Atlantic at latitudes of <30° N (IWC 2014a, Víkingsson and Heide-Jørgensen 2014). Summering areas are well known from past whaling activity and more recent surveys.

Major summering areas include the North, Norwegian and Barents Seas, the coastal waters of Iceland, east and west Greenland, Newfoundland and Labrador, and the northeastern coast of the USA. In some areas, common minke whales appear to be extending their summer range northward. There have been recent sightings of common minke whales in areas of Arctic Canada where they were not previously known by local residents (Higdon and Ferguson 2011), and an increase in takes in northern communities of West Greenland (NAMMCO 2012b). Recent Norwegian surveys in the Northeast also suggest a distributional shift to the north. These changes are likely in response to shifts in prey distribution, which themselves may be due to a warming marine climate in the area.

Summer distribution of common minke whales in the North Atlantic, showing sightings and effort from all North Atlantic Sightings surveys, 1987 – 2015, as well as 2007 CODA and SNESSA surveys. Not all areas were surveyed each year.

Management stocks

North Atlantic common minke whales have been divided into three management stocks by the International Whaling Commission (IWC) (Donovan 1991): the Northeast Atlantic, including the Barents, Norwegian and North seas; the Central Atlantic, including waters around Jan Mayen, Iceland and East Greenland; and the Western Atlantic, including West Greenland and the Canadian East Coast. These are also divided into smaller sub-stock areas (“small areas”). However, the original stock and sub-stock divisions were not based on extensive biological information, and recent examination of mainly genetic data has failed to provide clear evidence of stock structure amongst common minke whales in the North Atlantic (IWC 2014a,b). Although the NAMMCO Scientific Committee agreed that there is likely only one breeding stock in the North Atlantic, they have agreed to use 3 management areas: West, Central, and East (NAMMCO 2015). As a conservative approach to management, the Scientific Committee has based allowable catch advice on smaller sub-areas within the Central Area. These stock boundaries are considered operational to lessen the chances of depletion in any one area, rather than being real biological boundaries.

The migratory pattern of the North Atlantic common minke whale—wintering in the tropics and summering at high latitudes—is similar to that of other baleen whales in the northern and southern hemispheres. Consequently, there is usually no overlap in the distributions of northern and southern hemisphere populations. Therefore it was surprising to find that Antarctic minke whales (Balaenoptera bonaaerensis), a species distinct from the common minke whale, do occasionally find their way into the North Atlantic. Glover et al. (2010) used DNA profiles from minke whales taken in the Norwegian hunt to find that a single Antarctic minke whale was taken in 1996, and a hybrid between the two species in 2007. While such occurrences are probably quite rare, it does show that the hemispheric populations of whales are not as isolated from one another as was once assumed.

Map of the North Atlantic showing the sub-areas defined for the North Atlantic common minke whales.

Estimates of the abundance of common minke and other species of whales in the North Atlantic have been based largely on sightings surveys conducted from ships and airplanes. The North Atlantic Sightings Surveys (NASS) provide a time-series of abundance estimates from 1987 to 2007, covering a large part of the North Atlantic. Norwegian “mosaic” surveys cover most of the Northeast Atlantic, surveying a portion of the area annually on a six year rotation. Variation in distribution from year to year is incorporated into the variance of the resultant abundance estimate (Skaug et al. 2004).

In addition the European SCANS and CODA surveys, the Canadian component of T-NASS 2007 and NAISS 2016, and American SNESSA surveys have contributed to our knowledge of the abundance and distribution of common minke whales. Available abundance estimates by stock area are provided in the table below.

Northeast Atlantic

To date five abundance estimates are available from the Northeast Atlantic covering the period from 1989 to 2013, ranging from a low of 63,730 (cv 0.19) in 1989 to a high of 112,125 (cv 0.10) in 1995. The last two estimates, covering the periods 2001–2007 and 2008-13, are similar in magnitude. The apparent fluctuations in abundance, which are not statistically significant, may be due to changes in survey methods and coverage or changes in whale distribution between the Northeast and Central areas over the period. There is no evidence that abundance has increased or decreased from 1989 to 2015. Recent harvests in the area have ranged from 500 to just over 700 animals, with a quota in 2017 of 822. Although neither NAMMCO nor the IWC has assigned a specific conservation status to this stock, it is likely that it is in a healthy state as the numbers are large relative to present and historic harvests, and there is no evidence of any downward trend in numbers.

Central Atlantic

Seven abundance estimates for the CM sub-region of the Central Atlantic are available between 1987 and 2015, from Norwegian and NASS surveys. These have shown a general upward trend from 1989 to 1997, with stabilization thereafter until 2005, followed by a decrease in the 2008-13 survey series. However numbers again increased in the 2015 survey and were even higher in 2016 (Solvang et al. 2018, not shown). The general pattern suggests large-scale changes in distribution between this sub-area and adjacent areas. Given the generally low level of take and that there is no evidence of a long-term decline in numbers in the area, there is no conservation concern for common minke whales summering in the area.

The coastal area around Iceland, designated the CIP sub-region of the Central Atlantic, has been surveyed five times since 1987, most recently in 2015. Recent estimates (2007 to 2015) have been lower than previous ones. The reasons for this are unclear. Common minke whaling by Iceland has resumed only recently and the take is certainly not high enough to cause a decline of this apparent magnitude. Other possibilities include: 1) a change in seasonal migration, with common minke whales arriving in the area later than in previous years; 2) a change in spatial distribution, with common minke whales that previously summered in this area moving somewhere else. The latter possibility seems most likely, as in recent years, pronounced changes have occurred in oceanographic conditions and relative distribution and abundance of several species of fish (including sandeel and capelin) and seabirds in Icelandic waters (Víkingsson et al. 2015). Such changes in the distribution of important prey species would be expected to affect the distribution of common minke whales. Future surveys will attempt to address this question by extending coverage to areas not covered previously, particularly to the north and west, that might host large numbers of common minke whales.

The NAMMCO Scientific Committee used all available survey, catch and other data to conclude in 2015 that annual removals of up to 224 common minke whales from the CIC area are safe and precautionary until 2018 (NAMMCO 2015). The Scientific Committee revised its advice in 2017 to conclude that catches of up to 217 animals are safe for the period 2018-2025, and emphasized that this advice is conservative because it treats common minke whales in the CIC sub-area as a closed stock, when they are likely part of a larger North Atlantic group (NAMMCO 2017). Catches in this area have been much lower than this in recent years, ranging from 24 to 81 since hunting resumed in 2003.

The 2015 NASS provided the first ever estimate of common minke whales in the coastal waters of East Greenland of 2,762 (cv 0.47) (NAMMCO 2016). Catches in this area are generally low with an annual quota of 12.

The 2015 NASS provided a rare opportunity for an estimate covering most of the Central area, which totalled 48,016 (cv 0.23) (Pike 2018). This estimate is likely negatively biased as parts of the area, including the extreme south and northwest, remained unsurveyed.

West Greenland

The four aerial surveys that have produced useable estimates for West Greenland since 1993 suggest that abundance has fluctuated, rising until 2007 then dropping to the lowest abundance yet observed in 2015. There is evidence that common minke whales caught off West Greenland may be a component of a more widespread stock, particularly considering the high proportion of females in the catch (Laidre et al. 2009). Therefore it is difficult to infer the status of the overall stock using results from surveys off West Greenland only. It is also possible that there is exchange between East and West Greenland (see above), and that this contributes to the observed fluctuations (IWC 2018). The IWC Scientific Committee has advised that an annual take not exceeding 164 will not harm the stock, and recent harvests have been below this level.

Canadian East Coast

There are two recent estimates of common minke whale abundance from this area, suggesting an abundance in excess of 20,000 animals. As there has been no recent hunting in this area and no other known threats to the population, there is likely no conservation concern at this time.

Management

The common minke whale falls under the international management jurisdiction of the International Whaling Commission (IWC) and NAMMCO. NAMMCO provides scientific advice on stock status and sustainable takes, and proposals for conservation and management to member governments. In recent years NAMMCO has focussed its attention on the Central Stock at the request of Iceland. In 2011 the NAMMCO Scientific Committee concluded that annual removals of up to 229 common minke whales from the CIC area around Iceland are safe and precautionary (NAMMCO 2012a).

NAMMCO is the only international government organization presently operating an international inspection and observation program for marine mammal hunts, the Joint Control Scheme for the Hunting of Marine Mammals. The Scheme contains a set of common elements for national inspection programs for coastal and offshore whaling, including items mandatory for inclusion in whaling logbooks. It also includes an International Observation Scheme, with the overall objective of monitoring whether the decisions made by NAMMCO are respected and that all national and international regulations and requirements are being met. NAMMCO appoints observers to directly oversee hunting and inspection activities in member countries. These observers, who are normally not resident in the country being observed, may go out on whaling vessels to observe hunts, check licenses and relevant certificates, and inspect whaling logbooks. An observer might also inspect landing and processing facilities. Observers report directly to the NAMMCO Secretariat.

The IWC  began establishing quotas for the species in the 1970’s. In 1986, the IWC instituted a temporary moratorium on commercial whaling. However, Norway is not bound by the moratorium, as it raised a formal objection to it as allowed under the International Convention for the Regulation of Whaling. Greenland continues to hunt common minke whales under “aboriginal subsistence” quotas, which do not fall under the moratorium. Iceland withdrew from the IWC in 1992, after halting its common minke whale hunt in 1985. Iceland rejoined the IWC in 2003 with an objection to the moratorium in place.

The IWC provides assessment and scientific advice on stocks that are hunted in the North Atlantic. However it does not play a direct management role in the commercial whaling by Norway and Iceland, as this would be in conflict with the moratorium.

The IWC does provide management advice for the Aboriginal Subsistence Whaling  carried out by West Greenland. The recommended strike limits are based on scientific advice on sustainable take and the cultural and nutritional need level of the aboriginal group. The main objectives for Aboriginal Subsistence Whaling are 1) to ensure the risk of extinction is not seriously increased; 2) to enable harvests in perpetuity appropriate to cultural and nutritional requirements, and; 3) to maintain stocks at their highest net recruitment level and if below that to ensure they move towards it. Therefore, while quotas for commercial whaling are limited primarily by sustainability, allowable takes for the Aboriginal Subsistence whaling are limited both by sustainability and nutritional and cultural need. Greenland has expressed a need for 666 tonnes of whale meat annually. The annual quotas of minke, fin, humpback and bowhead whales would produce a total of about 574 tonnes, with meat from minke whales comprising about 50% of the total (Greenland 2012). The most recent recommended quotas for minke whales in Greenland are 12 for East Greenland and 178 for West Greenland.

While the IWC does not presently provide catch limits for commercial whaling, it has developed a methodology for doing so: the Revised Management Procedure (RMP). The RMP was developed by the IWC Scientific Committee and accepted by the Commission in 1994. The RMP has three main objectives: 1) Stable catch limits; 2) No catch for populations below 54% of their original size, or the “carrying capacity” of the habitat; 3) Maximizing yield within conservation limitations. The RMP uses a Catch Limit Algorithm (CLA) to calculate catch limits. The CLA uses available estimates of abundance, a catch series and biological information, as well as the uncertainty associated with this information, to calculate maximum allowable catch limits. Before the RMP and its CLA are implemented for a particular stock, it must be rigorously tested using various stock boundaries and distributions, using computer simulations. While the RMP has not yet been used by the IWC to provide catch limit advice, the Scientific Committee continues to develop the procedure and implement it for various whale stocks. It is also used by Norway to set their own national quotas.

In addition to the international management regimes of NAMMCO and the IWC, each country has its own management program to regulate common minke whaling.

Norway

Minke whale surfacing in calm blue sea, Bjornoya. © George McCallum / Whalephoto.com

Minke whale surfacing in calm blue sea, Bjørnøya. © George McCallum / Whalephoto.com

Norway sets its own national common minke whale quotas using advice from the NAMMCO Scientific Committee and the RMP implementation for the Northeastern stock developed by the IWC Scientific Committee. This implementation is reviewed every five years by the Scientific Committee. The quota is subdivided into small areas to spread the catch out over the stock area and reduce the risk of overexploitation. Whaling is restricted to the spring and summer seasons.

Norway also regulates the equipment used in common minke whale hunting to help ensure hunter safety and minimize animal suffering. This includes requirements for the size and type of harpoon guns, grenade type and charge, the minimum calibre and type of secondary killing rifles, and other equipment. All prospective whalers and gunners must pass an obligatory training course, including a shooting course, in order to obtain a licence (NAMMCO 2011a).

Norway has largely replaced human inspectors with an electronic monitoring system to independently monitor the activities of whalers (NAMMCO 2004, NAMMCO 2005, NAMMCO 2011a). The system was fully implemented in 2006. The “blue box” unit consists of a control and data logger designed to independently monitor and log hunting activity data provided by an independent GPS (time and position), and different sensors such as shot transducers, strain transducers and heel sensors placed in critical areas and structures of the boat, to detect when and where a whale is shot and taken on board. The sealed, tamper-proof unit can operate without maintenance for up to four months, and collected data are encrypted. After the hunting season, the encrypted data are collected from the Blue Box, decrypted and analyzed by authorized personnel in the Directorate of Fisheries. In addition to the automated monitoring system, inspectors from the Directorate of Fisheries conduct periodic random checks of hunting activities.

The legitimacy of the harvest is further ensured through the operation of the world’s first wildlife DNA registry. A sample is obtained from every legally taken minke whale. The analysis of 12 DNA loci allows the individual identification of whales: a DNA “fingerprint”. Meat and other products brought to market can then be sampled to check that the products come from legally taken whales. The efficacy of this system was recently demonstrated by a study that included sampling of market products and samples from two beached minke whales. All market products were identified as being from legally-caught whales, while the samples from the beached whales were not (Palsbøll et al. 2006).

Iceland

In recent years Iceland has set its common minke whale quota in accordance with advice from NAMMCO. Recent quotas have been 200 annually although actual catches have been considerably less than this.

Icelandic regulations require that the gunner take a course in the handling and firing of grenades and harpoons. In addition the gunner must hold a general firearms license to handle the backup weapon. Other regulations specify the size and type of weaponry and equipment used in the hunt (NAMMCO 2011a). Hunters are required to report their catch, including the sex, length and location of each animal taken, to the Directorate of Fisheries. National inspectors accompany whaling boats on a random, unannounced basis.

Iceland maintains a DNA registry modelled on that of Norway.

Hunting and Utilisation

Whaling has been conducted in the North Atlantic for thousands of years. However, directed hunting for common minke whales is relatively recent (Kalland 1995, Sigurjónsson 1997). Common minke whaling developed in the 20th century in Norway, Iceland, Greenland and Canada, and has been primarily carried out on a small scale by fishermen from small vessels, as a supplement to their fishing activity. The main product from the common minke whale harvest has always been meat for human consumption. At present common minke whaling is carried out by only three countries in the North Atlantic: Norway, Iceland and Greenland.

Norwegian common minke whaling with a harpoon cannon and explosive harpoon head. © T. Haug, IMR, Norway.

Norwegian common minke whaling with a harpoon cannon and explosive harpoon head. © T. Haug, IMR, Norway.

Norway

The Norwegian catch is taken primarily from the Northeastern stock area, but a small proportion is taken from the Central stock area around Jan Mayen. Norway also took common minke whales in the West Greenland stock area until 1986. Harvests approached 2000 whales annually before 1986, the year in which the IWC moratorium on commercial whaling took effect. Although Norway held a reservation to this decision and was not legally bound by it, it nevertheless temporarily ceased commercial whaling from 1988 to 1992, a period in which only scientific research whaling was permitted. In 1993 Norway resumed commercial whaling. Recent harvests have been in the range of 500 to 600 annually.

Whales are hunted from small (ca 50 ft) fishing vessels which are equipped for whaling in the spring and summer but fish the remainder of the year. The vessels are equipped with 50 mm or 60 mm harpoon cannons that use a gunpowder charge to fire the harpoon. The harpoons are of the “hot” type, tipped with explosive grenades loaded with 30 g of penthrite explosive. This grenade is triggered to detonate inside the whale. A line attached to the harpoon head secures the whale and prevents loss, and a winch is used to haul the animal to the boat (NAMMCO 2011a).

Flensing of a minke whale onboard a Norwegian vessel (1994). © B.T. Forberg, IMR, Norway.

Flensing of a minke whale onboard a Norwegian vessel (1994). © B.T. Forberg, IMR, Norway.

The harpooner generally shoots the whale from the side and aims for the thorax region. A large calibre rifle is used as a secondary killing method if required. This is usually not necessary: the  IDR “instantaneous death rate” from the harpoon shot alone was over 80% in 1,667 hunts monitored between 2000 and 2002 (NAMMCO 2011a).  In 2011 – 2012 Norway again collected TTD data and the IDR rate was 82 %. Most of the remainder died within a few minutes, and a small proportion had to be re-shot with the harpoon gun or despatched with a rifle shot to the brain. Once the whale is secured it is flensed onboard the vessel. Meat and other products are first cooled in the open air then stored on ice until the vessel returns to port.

Norway used to export large amounts of whale meat and blubber, primarily to Japan, but this trade ceased in 1983 when the Committee on the International Trade in Endangered Species (CITES) agreed to a trade ban on whale products. While Norway held a reservation on this decision, it nevertheless voluntarily stopped exporting whale products. In 2001, Norway granted permission for export sales to resume, but there has been little international trade since that time. Virtually all whale products are consumed within Norway. The meat is sold fresh or frozen in grocery stores, butcher shops and fish boutiques throughout Norway, and is also commonly offered in restaurants. Some is processed into products such as sausage and burger.

Iceland

Whaling has been carried out in Iceland since medieval times. Whales of various species were harpooned, speared and/or driven ashore, and natural strandings were also utilized for food if they were fresh enough. Indeed, the Icelandic word for a stranded whale, hvalreki, today is synonymous with an extremely fortunate event, or “godsend” (Sigurjónsson 1989). Modern whaling began in the late 1800’s, but this was targeted mainly at the larger blue and fin whales. Common minke whaling began early in the 20th century and was carried out by fishermen as a seasonal occupation. Initially, the catch of common minke whales was small and consumed domestically, averaging about 50 annually before 1950 (Sigurjónsson 1989). Gradually, the export market, primarily to Japan, became more important and harvest increased to around 200 annually by 1986, when whaling was discontinued in conformity with the IWC moratorium on commercial whaling which took effect that year. Common minke whaling resumed in 2003 under Scientific Permit and commercial whaling was resumed in 2006. Recent commercial harvests have ranged between 40 and 80 whales annually. The Icelandic catch of common minke whales is taken by vessels operating in coastal waters, from the CIC small area of the Central Stock.

The Icelandic Minke Whale Research Program. Sampling of stomach content. © Marine Research Institute, Iceland.

The Icelandic Minke Whale Research Program. Sampling of stomach content. © Marine and Freshwater Research Institute, Iceland.

Common minke whaling in Iceland is carried by small fishing vessels using harpoon cannons with exploding penthrite grenades; methods identical to those used in Norway. The catch is processed at sea as in Norway.

To date the hunt has not been monitored to collect time-to-death data, but the efficiency of the hunt is assumed to be similar to that in Norway (NAMMCO 2011a).

Since common minke whaling resumed in 2003, all common minke whale products have been consumed within Iceland. Whale meat was once a common staple in Iceland but became largely unavailable after the cessation of whaling in 1986. Whale meat is now available at butcher shops, supermarkets and restaurants throughout the country and is prepared and consumed much like any other meat. A particular delicacy in Iceland is made from the ventral groove blubber pickled in sour milk (Hvalrengi). This preservation method using lactic acid derived from milk (súrmattur) is unique to Iceland and the foundation of many traditional Icelandic dishes (Sigurgeirsson 2001).

Greenland

Onshore processing of common minke whale in Greenland. © F. Sejersen

Collective common minke whale hunt in Greenland. © F. Sejersen

The Greenlandic catch is taken primarily from the West Greenland stock area, but a small proportion is taken by East Greenlanders from the Central stock area. Catches have been relatively stable over the past 10 years, ranging from 140 to 200 whales for all of Greenland. Whaling in Greenland was not affected by the IWC moratorium on commercial whaling, as the hunt in Greenland is considered to be “Aboriginal Subsistence”, rather than commercial whaling.

Whales are hunted for the most part using methods similar to those used in Norway. Between 40 and 50 vessels in Greenland are equipped with harpoon cannons, hunting common minke and larger whales (Greenland 2012). However, about 20% to 30% of the quota is taken by small boats in a collective rifle hunt. This type of hunting is done primarily in isolated communities which lack vessels equipped with harpoon cannons, such as those north of Disko Bay and in East Greenland. Generally five or more small boats and crews participate in such hunts. The hunters first fire into the water to drive the whale towards shallow water, where it can more easily be retrieved. Once the whale is in a suitable area, it is shot non-lethally to slow it down enough so that the hunters may approach closely enough to harpoon it. As soon as possible, the whale is secured with harpoons attached by lines to large floats. When a sufficient number of floats are attached to prevent the whale from sinking, it is killed with rifle shots to the brain (Larsen and Hansen 1997, NAMMCO 2011a).

Whales killed in the collective hunts are towed to shore and butchered on the beach. This is also done by some vessels participating in the harpoon cannon hunt if they are not equipped for onboard processing.

Time to death of whales taken in the harpoon gun hunt appear to be somewhat higher than that achieved in Norway. During the years 2007 to 2011, median times to death were 1 to 5 minutes and 20% of the whales died instantaneously or within 1 minute; this contrasts with the instantaneous death rate of 80% in the Norwegian hunt (Greenland 2012, NAMMCO 2011a). The reasons for this are not clear but may include differences in monitoring methods, inferior weaponry and a lack of training for hunters. The struck-and-lost rate for this hunt during the same period was just 1% (Greenland 2012).

In the collective hunts, only a small proportion of the whales are killed instantly or quickly, and the median time to death ranged from 20 to 25 minutes (Greenland 2012). This is integral in the nature of the hunt as the whale must be secured with several harpoons before it is killed to prevent loss. This is a feature of many marine mammal hunts where the need to secure the animal and prevent struck-and-loss must be balanced against the ideal of an instantaneous kill (NAMMCO 2007). The struck-and-lost rate for this hunt averaged 6% from 2007 to 2011 (Greenland 2012).

Onshore processing of common minke whale in Greenland. © F. Sejersen

Onshore processing of common minke whale in Greenland. © F. Sejersen

In Greenland, the meat of the common minke whale is a welcome food. The skin and subcutaneous fat, called mattak, is also consumed. The ventral grooves (Greenlandicqiporaq) are considered a particular delicacy. The baleen and bones are sometimes used for carving and other crafts. Consumption of minke whale meat in Greenland over the past several years has been roughly 340 tonnes annually, making the minke whale hunt the largest source of whale meat in Greenland (Greenland 2012).

Historically, the catch of common minke whales or other large animal was divided and shared among participating hunters and their extended families according to complex traditional rules (Inuktitut ningiqtuq, Greenlandic ningerpoq) that helped to ensure that the entire camp or community received a portion of the catch (Wenzel 1995, Sejersen 2001). However in the case of common minke and other large whales, sales for cash are very important in maintaining the hunt. Operating a whaler equipped with a harpoon cannon can be very expensive: the cannon alone might cost US $60,000 and each grenade costs as much as US $1,500 (Greenland 2012), and fuel is very expensive in Greenland. Therefore, some portion of the catch is sold in the open-air markets (Greenlandic Kalaalimineerniarfik, Danish brædtet) present in every village and town, and in supermarkets and restaurants. As well as providing needed income for hunters, this also supplies meat to areas in Greenland that cannot access a sufficient supply locally.

Recent Catches

Climate Impacts

In some areas, common minke whales appear to be extending their summer range northward. There have been recent sightings of common minke whales in areas of Arctic Canada where they were not previously known by local residents (Higdon and Ferguson 2011), and an increase in takes in northern communities of West Greenland (NAMMCO 2012b). Recent Norwegian surveys in the Northeast also suggest a distributional shift to the north. These changes are likely in response to shifts in prey distribution, which themselves may be due to a warming marine climate in the area. For the Central Atlantic stock, in recent years pronounced changes have occurred in oceanographic conditions and relative distribution and abundance of several species of fish (including sandeel and capelin) and seabirds in Icelandic waters. Such changes in the distribution of important prey species would be expected to affect the distribution of common minke whales. Also, if ocean currents and water temperature influence whale migration, feeding, breeding, and calving site selection, any changes in these factors could render currently used habitat unsuitable.

Noise

Common minke whales may be affected by noise related to human activities such as shipping and resource development (e.g., seismic, drilling). Noise in the environment may interfere with the whale’s low-frequency sounds used to communicate with each other.

Vessel Strikes

Common minke whales, similar to fin whales, sometimes feed at the surface of the water, making them susceptible to being struck by ships. There are few reports of collisions with common minke whales, however. It is unknown whether this is because they are not struck, or because they are relatively small and therefore the vessel may be unaware that they have struck a common minke whale

Entanglements

Minke whales may be taken occasionally as by-catch in fishing nets and other gear but it is not considered to have a large impact on their population, especially in the North Atlantic. There are very few reports of by-catch in the reports of the ICES Working Group on By-catch of Protected Species (WGBYC) for the period 2008-2012 (ICES WGBYC 2010-2014).

Minke whale off Iceland. © Marine Research Institute, Iceland.

Minke whale off Iceland. © Marine and Freshwater Research Institute, Iceland.

Research in NAMMCO Member Countries

All NAMMCO member countries as well as Canada have participated in the NASS and T-NASS surveys, and the common minke whale has been a target species in all areas. These surveys are coordinated through the Scientific Committee of NAMMCO. In addition each country conducts other important research on the biology and ecology of common minke whales.

Norway

Norway, along with other NAMMCO member countries, has a long-term goal of implementing ecosystem-based management for its fisheries and marine mammal hunts. A big part of this involves food web modelling to determine what effects the harvesting (or not harvesting) of one species might have on others in the ecosystem. Norway has concentrated its efforts in this area on modelling the Barents Sea ecosystem, which is relatively simple and has just a few very abundant species. Modelling requires extensive data on diet and energy requirements by age and size for all major species in the ecosystem, as well as information on the seasonal distribution and abundance of these species. These data become input into complex mathematical ecosystem models with acronyms such as SeaStar, Bifrost and GADGET. Output from these modelling efforts confirm that common minke whales are an important predator in the Barents Sea ecosystem, inflicting major mortality on adult and juvenile herring, cod and capelin (NAMMCO 2010).

Satellite tagging of a common minke whale in summer 2014 off Norway. The carrier for the satellite tag, that can be seen on the back of the whale, will fall of quite soon after the tag is implanted into the whale and leave the tag inside. Photo: K.A. Fagerheim, Institute of Marine Research, Norway.

Satellite tagging of a common minke whale in summer 2014 off Norway. The carrier for the satellite tag, that can be seen on the back of the whale, will fall of quite soon after the tag is implanted into the whale and leave the tag inside. © K.A. Fagerheim, IMR, Norway.

The DNA registry, for which DNA profiles are taken from every common minke whale taken, has found uses outside the monitoring of legal catch in Norway. Skaug and Øien (2005) analyzed the profiles of 288 mother-fetus pairs in the registry to determine the partial DNA profile of the father in each case. They then searched the registry to determine if the father had also been caught. They were able to identify three likely cases of paternity in the dataset. These data can be informative about stock relationships in the area, as the time and location of every kill is known. They can also be used to roughly estimate the number of minke whales in the area through genetic “mark-recapture” analysis; this produces an estimate similar to that from sightings surveys, but with greater uncertainty because of the low number of recaptures. In addition to this, the registry has also been used to identify occasional instances of Antarctic minke whales, a species thought to occur only in the southern hemisphere, in the catch (Glover et al. 2010).

Norway has conducted extensive research to improve methods to quickly and humanely kill whales, the only country to do so in modern times. A major focus of this research has been the development and refinement of the explosive penthrite grenades used in the hunt, which replaced the “cold” non-explosive harpoon heads used earlier. The initial development and deployment of the penthrite grenade was completed in 1986 but refinement of the weaponry is ongoing. The use of the explosive grenades greatly increased the instantaneous death rate to over 80% today as opposed to only 17% for the cold harpoon, as well as greatly reducing the average time to death. In addition, post-mortem studies of killed whales have been used to determine the actual cause of death and to provide information to hunters to refine their abilities.

Common minke whales are widely dispersed in the northeastern Atlantic during the summer but virtually nothing is known about their movements, site fidelity and dispersal patterns in this area, especially in winter. Satellite telemetry is a powerful tool for collecting data on migration, winter distribution and key behavioural and physiological parameters of cetacean species. Norway started satellite tagging minke whales in September 1994 (Heide-Jørgensen et al. 2001) in the attempt of identifying their seasonal movement patterns along the coast of Norway.

Iceland

Hrefnuveiðar 2003

The Icelandic Minke Whale Research Program. Sampling of blubber thickness © Marine and Freshwater Research Institute, Iceland.

After rejoining the IWC in 2003, Iceland began initiated work on a whale research program which was initially planned to include lethal sampling of common minke, fin and sei whales. Takes of the latter two species were later dropped from the program, and it became the Minke Whale Research Program. Such whaling is permitted under Article VIII of the International Convention on the Regulation of whaling, which allows contracting governments to grant special permits for scientific research. The main objective of the Program was to collect information on the feeding ecology of minke whales for incorporation into multi-species ecosystem models, with the overall goal of including these models in management programs for fish and marine mammals. Other objectives include investigations on stock structure, distribution and migration, growth and life history, parasites, diseases, biological parameters and pollutants (NAMMCO 2003, Pampoulie et al. 2013).

While initially envisaged to last for two years, the program was extended until 2007. Over this period a total of 190 minke whales were taken, with catches distributed around Iceland in proportion to the relative abundance observed from sightings surveys. More than 70 measurements and 80 samples were taken from each whale captured. The results, summarize by Pampoulie et al. (2013), were presented at a special IWC meeting in February 2013.

The results from the diet and feeding studies demonstrate that minke whales are opportunistic feeders that feed predominantly on fish. There is also some indication that the diet of minke whales in the area is changing in response to changes in the marine ecosystem. While sandeel dominated the diet in southern areas, it became less important after a decline in the sandeel stock. Over the same period herring became much more important in the diet. There have also been shifts in minke whale distribution that may be related to these changes in fish populations in the area. These in turn might be related to a recent increases in sea temperature in the area.

Length, age, abundance and catch data from the Research Program and previous work using commercial catches were included in a stock assessment model called Gadget, which can be expanded into a multi-species model. In this implementation, minke whale abundance was modelled to respond to the relative abundance of sandeel, a favoured prey in this area which has declined in recent years. The modelling outcomes show good fit to the available data and confirm that whaling mortality is very low for this stock. In the future the model will be expanded to include other species in order to further determine the role of the common minke whale in the marine ecosystem around Iceland.

The Icelandic Minke Whale Research Program. Sampling of stomach content. Photo: Marine Research Institute, Iceland.

The Icelandic Minke Whale Research Program. Sampling of stomach content. © Marine and Freshwater Research Institute, Iceland.

Other key results of the Program include:

Determining common minke whale age using earplugs or tympanic bullae was found to be unreliable. Aging using aspartic acid racemisation in the eye lens was found to be more accurate and reliable, revealing ages up to 42 years.

Common minke whales accumulate blubber rapidly over the spring, summer and fall, with a mature whale adding as much as 500 kg of blubber on the feeding grounds. This energy reserve can then be used for growth, reproduction and migration to and from the breeding grounds.

Satellite tagging was attempted on 12 common minke whales, and tags were successfully deployed on six whales (Víkingsson and Heide-Jørgensen 2013, 2014). Of these three endured into the whale’s fall southward migration. These whales migrated southwards in the mid-Atlantic, one of them reaching 28°S when transmissions ceased in early December. Migrating whales moved much faster than those on the Icelandic shelf, well over 100 km per day on average.

Greenland

Aerial surveys primarily directed at common minke whales are carried out periodically in Greenlandic waters, most recently in 2005 and 2007 (Heide-Jørgensenet al. 2008, 2010). The 2007 survey included still and video camera systems as well as human observers. The data analysis was innovative in using data obtained from aerial photography and satellite tags to correct the survey for whales that were submerged during the passage of the plane.

Greenlandic researcher M.P. Heide-Jørgensen is a leader in the development of equipment and techniques for tagging whales with satellite-linked transmitters. Tags developed by Dr. Heide-Jørgensen have been used on several species in Greenland, Iceland, Norway and other areas. Common minke whales have proven to be one of the most difficult whales to tag successfully, as they are difficult to approach, offer a relatively small target and seem to shed tags effectively. The longest tag duration so far achieved is 101 days; less than 30 days is more typical and some tags never transmit at all (Víkingsson and Heide-Jørgensen 2013). Nevertheless the technique is still under active development and will likely provide further valuable information on minke whales in the future.

Faroe Islands

Minke whales are not taken or frequently sighted in the Faroes, and therefore are not a subject of priority research there.

Andersen, L.W., Born, E.W., Dietz, R., Haug, T., Oeien, N., Bendixen, C, 2003. Genetic population structure of minke whales Balaenoptera acutorostrata from Greenland, the North East Atlantic and the North Sea probably reflects different ecological regions. Mar. Ecol. Progr. Ser. 247:263-280.


Anderwald, P., Daníelsdóttir, A.K., Haug, T., Larsen, F., Lesage, V., Reid, R.J., Víkingsson, G.A. and Hoelzel, A.R. 2011. Possible cryptic stock structure for minke whales in the North Atlantic: Implications for conservation and management. Biol. Cons. 144:2479-2489.


Audunsson, G.A., Nielsen, N.H., Víkingsson, G.A., Halldórsson, S.D., Gunnlaugsson, Th., Elvarsson, B., Kato, H. and Hansen, S.H. 2013. Age estimation of common minke whales (Balaenoptera acutorostrata) in Icelandic waters by aspartic acid racemisation and earplug readings of Antarctic minke whales (B. bonaerensis) used as a reference. SC/F13/SP15 for the IWC Scientific Committee.


Borchers, D.L., Pike, D.G., Gunnlaugsson, Th. and Vikingsson, G.A. 2009. Minke whale abundance estimation from the NASS 1987 and 2001 aerial surveys using cue counting with distance estimation errors. NAMMCO Sci. Publ. 7:95-110.


Born, E.W., Kingsley, M.C.S., Riget, F.F., Dietz, R., Møller, P., Haug, T., Muir, D.C.G., Outridge, P. and Øien, N. 2007. A multi-elemental approach to identification of subpopulations of North Atlantic minke whales Balaenoptera acutorostrata. Wildl. Biol. 13:84-97.


Christiansen, F., Víkingsson, G. A., Rasmussen, M. H. and Lusseau, D. 2013. Minke whales maximise energy storage on their feeding grounds. J. Exp. Biol. 216:427-436.


Donovan, G.P. 1991. A review of the IWC stock boundaries. Rep. Int. Whal. Commn (special issue 13):39- 68.


Ford, J.K.B., Ellis, G.M., Matkin, D.R., Balcomb, K.C., Briggs, D. and Morton, A.B. 2005. Killer whale attacks on minke whales: Prey capture and antipredator tactics. Marine Mammal Science 21:603-618.


Glover, K.A., Kanda, N., Haug, T., Pastene, L.A., Øien, N., Goto, M., Seliusen, B.B. and Skaug, H.J. 2010. Migration of Antarctic minke whales to the Arctic. PloS One 2010 5:e15197.


Greenland. 2012. White paper on the management and utilization of large whales in Greenland. IWC/64/ASW/X available at http://naalakkersuisut.gl/~/media/Nanoq/Files/Publications/Fangst%20og%20fiskeri/ENG/UdgivelserFJ AFinalCaptia%20Whitepaperwhaling2012eng%20DOK9064901806.pdf


Heide-Jørgensen, M. P., Witting, L., Laidre, K. L., Hansen, R. G. and Rasmussen, M. 2010. Fully corrected estimates of common minke whale abundance in West Greenland in 2007. J. Cetacean Research and Management 11:75-82.


Heide-Jørgensen, M.P., Borchers, D.L., Witting, L., Laidre, K.L., Simon, M.J., Rosing-Asvid, A. and Pike, D.G. 2008. Estimates of large whale abundance in West Greenland waters from an aerial survey in 2005. J. Cetacean Res. Manage. 10(2):119–30.


Heide-Jørgensen, M. P., Nordøy, E. S., Øien, N., Folkow, L. P., Kleivane, L., Blix, A. S., Jensen, M. V. and Laidre, K. L. 2001. Satellite tracking of minke whales (Balaenoptera acutorostrata) off the coast of northern Norway. J. Cetacean Res. Manage. 3(2):175–178.


Higdon, J.W. and Ferguson, S.H. 2010. Reports of humpback and minke whales in the Hudson Bay Region, Eastern Canadian Arctic. Northeast Naturalist 18:370-377.


(IWC) International Whaling Commission. 2010. Report of the Scientific Assessment Group. IWC/N10/SWG6. 14 pp.


(IWC) International Whaling Commission. 2010. Report of the Scientific Committee. J. Cetacean Res. Manage. 11 (Suppl. 2).


(IWC) International Whaling Commission. 2014a. Report of the AWMP/RMP Joint Workshop on the stock structure of North Atlantic common minke whales. SC/65b/REP04 (draft, in prep.).


(IWC) International Whaling Commission. 2014b. Implementation Review for North Atlantic common minke whales. SC/65b/RMPWP24 (draft, in prep.).


(IWC) International Whaling Commission. (2016) Report of the Scientific Committee. Annex D: Report of the Sub-Committee on the Revised Management Procedure. J. Cetacean Res. Mgt. 17:106-184.


Kalland, A. 1995. Marine mammals in the culture of Norwegian coastal communities. p.689-697. In: Blix, A.S., Walløe, L. and Ulltang, Ø. (eds.); Whales, seals, fish and man. Elsevier, Amsterdam.


Laidre, K. L., Heagerty, P. J., Heide-Jørgensen, M. P., Witting, L., and Simon, M. 2009. Sexual segregation of common minke whales (Balaenoptera acutorostrata) in Greenland, and the influence of sea temperature on the sex ratio of catches. ICES J. Mar. Sci. 66: 2253–2266.


Larsen, F. 1995. Abundance of minke and fin whales off West Greenland, 1993. Rep. int. Whal. Commn 45:365-370.


Larsen, S.E. and Hansen, K.G. 1997. Inuit and whales at Sarfaq (Greenland). In: Stevenson, M.G., Madsen, A. and Maloney, E. (eds), The Anthropology of Community-Based Whaling in Greenland. Canadian Circumpolar Institute, University of Alberta, Canada. Pp. 191-222.


Lawson, J. and Gosselin, J-F. 2011. Fully-corrected cetacean abundance estimates from the Canadian TNASS survey. (Draft paper available from J. Lawson).


Lawson, J. and Gosselin, J-F. 2018. Estimates of cetacean abundance from the 2016 NAISS aerial surveys of eastern Canadian waters, with a comparison to estimates from the 2007 TNASS. SC/25/AE/09 for the NAMMCO Scientific Committee.


Martin, A.R., Donovan, G.P, Leatherwood, S., Hammond, P.S., Ross, G.J.B., Mead, J.G., Reeves, R.R., Hohn, A.A., Lockyer, C.H., Jefferson, T.A. and Webber, M.A. 1990. Whales and dolphins. Bedford Editions Ltd., London, 192pp.


(NAMMCO) North Atlantic Marine Mammal Commission. 1998. Report of the Working Group on the Role of Minke Whales, Harp Seals and Hooded Seals in North Atlantic Ecosystems. In: NAMMCO Annual Report 1997, NAMMCO, Tromsø, Norway, pp. 125-146.


(NAMMCO) North Atlantic Marine Mammal Commission. 1999 Report of the NAMMCO Scientific Committee Working Group on Management Procedures. In: NAMMCO Annual Report 1998, NAMMCO, Tromsø, Norway, pp. 117-131.


(NAMMCO) North Atlantic Marine Mammal Commission. 2003. Norway: National Progress Report 2001. In: NAMMCO Annual Report 2002. NAMMCO, Tromsø, Norway, pp. 285-290.


(NAMMCO) North Atlantic Marine Mammal Commission. 2004. Norway: National Progress Report. In: NAMMCO Annual Report 2004. NAMMCO, Tromsø, Norway, pp. 309-330.


(NAMMCO) North Atlantic Marine Mammal Commission. 2005. Norway: National Progress Report. In: NAMMCO Annual Report 2004. NAMMCO, Tromsø, Norway, pp. 337-358.


(NAMMCO) North Atlantic Marine Mammal Commission. 2007. Norway: National Progress Report. In: NAMMCO Annual Report 2006: Volume II. NAMMCO, Tromsø, Norway, pp. 519-545.


(NAMMCO) North Atlantic Marine Mammal Commission. 2010. Norway: National Progress Report. In: NAMMCO Annual Report 2010. NAMMCO, Tromsø, Norway, pp. 451-478.


(NAMMCO) North Atlantic Marine Mammal Commission. 2011a. Report of the NAMMCO Expert Group meeting on the assessment of whale killing data. In: NAMMCO Annual Report 2010. NAMMCO, Tromsø, Norway, pp. 57-84.


(NAMMCO) North Atlantic Marine Mammal Commission. 2011b. Report of the Scientific Committee. In: NAMMCO Annual Report 2010. NAMMCO, Tromso, Norway, pp. 235-412.


(NAMMCO) North Atlantic Marine Mammal Commission. 2012a. Report of the eighteenth meeting of the Scientific Committee. In: NAMMCO Annual Report 2011. NAMMCO, Tromsø, Norway, pp. 229-434.


(NAMMCO) North Atlantic Marine Mammal Commission. 2012b. Report of the nineteenth meeting of the Scientific Committee. In: NAMMCO Annual Report 2012. NAMMCO, Tromsø, Norway, pp. 263-550.


(NAMMCO) North Atlantic Marine Mammal Commission. 2015. Report of the Scientific Committee Working Group on large whale assessment. In: NAMMCO Annual Report 2015, NAMMCO, Tromsø, Norway, pp. 238-247. Available at https://nammco.no/wp-content/uploads/2017/08/annual-report-2015.pdf


(NAMMCO) North Atlantic Marine Mammal Commission. 2016. Report of the Scientific Committee Working Group on Abundance Estimates. In: NAMMCO Annual Report 2016, NAMMCO, Tromsø, pp. 221-248. Available at https://nammco.no/wp-content/uploads/2017/09/nammco-annual-report-2016.pdf


(NAMMCO) North Atlantic Marine Mammal Commission. 2017. Report of the 24th Scientific Committee meeting. Available at https://nammco.no/wp-content/uploads/2017/01/24th-scientific-committee-meeting-report.pdf


National Oceanographic and Atmospheric Administration (NOAA)- Minke
whale. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/minkewhale.htm Accessed 28/11/2014


Ólafsdóttir, D., and Shinn, A. P. 2013. Epibiotic macrofauna on common minke whales, Balaenoptera acutorostrata Lacépède, 1804, in Icelandic waters. Parasites & vectors 6 (1),
105. http://www.parasitesandvectors.com/content/pdf/1756-3305-6-105.pdf


Øien, N. 1989. Sightings estimates of northeast Atlantic minke whale abundance from the Norwegian shipboard survey in July 1987. Rep. Int. Whal. Commn 39: 417-21.


Palsbøll, P.J., Berube, M., Skaug, H.J. and Raymakers, C. 2006. DNA registers of legally obtained wildlife and derived products as means to identify illegal takes. Cons. Biol. 20:1284-1293.


Pampoulie, C., Gunnlaugsson, Th., Elvarsson, B., Pétursdóttir, H., Chosson, V., Audunsson, G.A., Kjeld, M., Hauksson, E., Karlsson, K., Gudnason, K., Svansson, V., Benonisdotter, S., Ólafsdóttir, D. and Víkingsson, G. 2013. Research program on common minke whale (Balaenoptera acutorostrata) in Icelandic waters. An overview of implementation and results. SC/F13/SP1 for the IWC Scientific Committee. http://events.iwc.int/index.php/workshops/ISPEPR2013/paper/viewFile/76/55


Pike, D.G., Gunnlaugsson, Th., Elvarsson, B., and Víkingsson, G.A. 2011. Correcting perception bias for Icelandic aerial surveys, 2007 and 2009. NAMMCO SC/18/AESP/08 for the NAMMCO Scientific Committee. Available from the NAMMCO Secretariat.


Pike, D.G. 2018. Abundance of common minke whales in the Central Medium Area in 2015. SC/25/AE/08 for the NAMMCO Scientific Committee.


Sejersen, F. 2001. Hunting and management of beluga whales (Delphinapterus leucas) in Greenland: Changing strategies to cope with new national and local interests. Arctic 54:431-443.


Schweder, T., Skaug, H.J., Dimakos, X.K., Langaas, M. and Øien, N. 1997. Abundance of northeastern Atlantic minke whales, estimates for 1989 and 1995. Rep. Int. Whal. Commn. 47:453-484.


Sigurgeirsson, S. 2001. Iceland. Gastronomica: The journal of food and culture 1:86-89.


Sigurjónsson, J. 1989. To Iceland, whales were a godsend. Oceanus 32:24-41.


Sigurjónsson, J. 1997. Whale resources in the North Atlantic and the concept of sustainability. In: Pétursdóttir, G. (ed.); Whaling in the North Atlantic. University of Iceland Press, pp. 17-32.


Sigurjónsson, J. and Vikingsson, G. 1997. Seasonal abundance of and estimated food consumption by cetaceans in Icelandic and adjacent waters. J. Northw. Atl. Fish. Sci. 22:271-87.


Skaug, H.J. and Øien, N. 2005. Genetic tagging of male North Atlantic minke whales through comparison of maternal and foetal DNA-profiles. J. Cetacean Res. and Management 7:113-117.


Skaug, H.J., Øien, N., Schweder, T. and Bøthun, G. 2004. Abundance of minke whales (Balaenoptera acutorostrata) in the Northeast Atlantic: variability in time and space. Can. J. Fish. Aquat. Sci. 61:870- 886.


Solvang, H.K., Skaug, H.J., Øien, N. 2015. Abundance estimates of common minke whales in the Northeast Atlantic based on survey data collected over the period 2008-2013. SC/66a/RMP/8; Paper submitted to the IWC Scientific Committee 66a, San Diego, 22 May 2015.


Solvang, H.K., Skaug, H.J., Øien, N. 2018.  Preliminary abundance estimates of common minke whales in Svalbard 2014, the Norwegian Sea 2015, Jan Mayen 2016 and the Barents Sea 2017 – the first four years of the survey cycle 2014-2019 of the Northeast Atlantic (Including extension survey NASS2015 Jan Mayen). SC/25/AE/13 for the NAMMCO Scientific Committee.


Stefánsson, G., Sigurjónsson, J. and Vikingsson, G. 1997. On dynamic interaction between some fish resources and cetaceans off Iceland based on a simulation model. J. Northw. Atl. Fish. Sci. 22:357-70


Toresen, R. et al. 1998. Havets ressurser 1998. (The sea’s resources, 1998) FiskenHav, Særnr. 1. In Norwegian.


Víkingsson, G.A. and Heide-Jørgensen, M.P. 2013. Migration and local movements of common
minke whales tracked by satellite in the North Atlantic during 2001 – 2010. SC/F13/SP18 for the IWC Scientific Committee. http://events.iwc.int/index.php/workshops/ISPEPR2013/paper/viewFile/59/40


Víkingsson, G.A. and Heide-Jørgensen, M.P. 2014. First indications of autumn migration routes and destination of common minke whales tracked by satellite in the North Atlantic during 2001 – 2011. Marine Mammal Science. DOI: 10.1111/mms.12144


Víkingsson, G.A., Elvarsson, B., Chosson, V., Ólafsdóttir, D. and Galan, A. 2013. Recent changes in the diet composition of common minke whales (Balaenoptera acutorostrata) in Icelandic waters. – Consequence of climate change? SC/F13/SP2 for the IWC Scientific Committee.


Víkingsson, G.A., Pike, D.G., Valdimarsson, H., Schleimer, A., Gunnlaugsson, T., Silva, T., Elvarsson, B.Þ., Mikkelsen, B., Øien, N., Desportes, G., Bogason, V., Hammond, P.S., 2015. Distribution, abundance, and feeding ecology of baleen whales in Icelandic waters: have recent environmental changes had an effect? Front. Ecol. Evol. 3. https://doi.org/10.3389/fevo.2015.00006


Wenzel G.W. 1995. Ningiqtuq: Inuit resource sharing and generalized reciprocity in Clyde River, Nunavut. Arctic Anthropology 32:43–60.

Start typing and press Enter to search