Bearded Seal

Updated: July 2018

The bearded seal gets its name from the long white whiskers it has on its muzzle. Another English name for them, “square flipper”, refers to their large pectoral flippers which are flattened at the ends. These characteristics, plus the fact that the head appears small relative to the overall body size, make the bearded seal easy to distinguish from other northern seals.

Bearded seals are found throughout the Arctic, and are the largest species of seal in the north. Bearded seals can grow to about 2.1 m to 2.7 m in length and weigh between 200-430 kg (DFO 2016). Males and females are difficult to distinguish, though in the spring the females tend to be slightly larger than the males. The largest bearded seal recorded was a female that weighed 432 kg (Cameron et al. 2010). Maximum body size is reached when the seal is 9 to 10 years old, and bearded seals may live for up to 30 years.

Bearded seal assessment table

Abundance

Estimated to be 500,000 to 1 million across the Arctic, but data is poor

Distribution

Throughout the Arctic and sub-Arctic, strongly associated with sea ice

Relation to Humans

Subsistence harvest throughout its range, some previous commercial harvest in Svalbard and Russia, currently a small sport-hunt in Svalbard

Conservation and Management

Advice on management provided by NAMMCO in the relevant countries. In both Greenland and Norway, hunters must have permit, but there is no quota.

© Mike Pennington

Bearded seal © Martha de Jong Lantink

Latin:  Erignathus barbatus (Erxleben, 1777)
Erignathus barbatus barbatus –“Atlantic” subspecies
Erignathus barbatus nauticus – “Pacific” subspecies

Norwegian: Storkobbe
Danish:  Remmesæl
Icelandic: Kampselur, Granselur, Kampur
Faroese: Granarkópur
Greenlandic: Ussuk
Inuktitut: Ugjuk
English: Bearded seal, Square flipper

Lifespan

about 30 years

Average Size

2.1-2.7m in length, 200-430 kg in weight

Migration and Movements

Stay with the ice edge, following it as it moves seasonally

Feeding

Benthic (bottom) feeders, mostly fish but some invertebrates

General characteristics

bearded seal Svalbard

© Steven J. Kazlowski/Alamy

Bearded seals adults have dark grey or brown fur, often with reddish brown faces and pectoral flippers.  The young are a lighter grey or brown with a pale face. Newborns are born with a long lanugo coat which is grey to black in colour with lighter areas along their head and back, and sometimes rear flippers. This long coat is quickly shed during the nursing period.

Two subspecies of bearded seal are recognized. The Erignathus barbatus barbatus subspecies is found from the central Canadian Arctic east to the central Eurasian Arctic (the “Atlantic” subspecies) while the “Pacific” subspecies, E. barbatus nauticus, occurs from the Laptev Sea east, including the Sea of Okhotsk to the central Canadian Arctic. The geographic distributions of these subspecies are not separated by any particular gaps, and there is still some discussion about where the boundary between the two subspecies should lie. There is support for recognizing two subspecies from genetics studies (Davis et al. 2008), as well as from studies of geographical differences in the calls of male bearded seals (Charrier et al. 2013, Risch et al. 2007).

Tourists viewing a seal, shows a good look at the front flippers

Behaviour: whelping, breeding, migration

Bearded seals are not a social species, and typically occur alone or in small groups throughout their range. During the breeding season, some social behaviour is seen, with the males producing various vocalizations to advertise their breeding condition (Mizuguchi et al. 2016) and/or defend a breeding territory (Charrier et al. 2013). Males are also aggressive toward other males during breeding, with both bubble-blowing displays and direct physical contact (Kovacs 2016).

bearded seal

© Philip Mugridge/Alamy

Bearded seals are closely associated with sea ice throughout their lives, especially during the critical life history periods related to reproduction and moulting. They prefer areas of moving pack ice and open water such as leads and polynyas, where the water depth is less than around 200 m, but they have been seen to maintain breathing holes in landfast ice and occupy deeper areas. In the open water season, bearded seals have been seen to enter river estuaries and haul out on land (Stewart and Lockhart 2005). They are primarily coastal animals but may also be found in drifting pack ice far from shore in shallow areas such as the Bering and Barents Seas (Kovacs et al. 2011).

Bearded seals overwinter near polynyas or other areas with leads and open water, or they stay near ice edges. The “North Water”, a large annual polynya between Canada and Greenland, is an important overwintering location for bearded seals. A recent aerial survey conducted over the eastern part of the North Water in April 2014 found an estimated 10,000 bearded seals there (NAMMCO 2015).

In some areas, as in the Bering and Chukchi seas, they undergo seasonal movements with the advance and retreat of sea ice (Kovacs 2016). In other parts of their range they stay more or less in the same area year-round, making more local movements in response to ice conditions.

Sexual maturity and breeding

In general, bearded seals attain sexual maturity at ages 5‐6 for females and 6‐7 for males (Cameron et al. 2010). In surveys of bearded seal reproduction done in various Arctic locations, females have been found to attain sexual maturity between 3 and 7 years of age (Andersen et al. 1999). In Svalbard, females were found to mature at 5 years old (Kovacs 2016). Although males become mature at around the same age as females, they may not successfully breed until they are older.

The majority of mature females breed each year, producing one pup, although variation in pregnancy rates has been recorded for various locations (Cameron et al. 2010). These variations may indicate differences in carrying capacity between the various habitats.

bearded seal and pup

Bearded seal female and pup rest on sea ice © Danita Delimont/Alamy

Pups are born on the ice, either on pack ice or on small floes of annual sea ice (Hindell et al. 2012). In Svalbard, bearded seals have also been seen to use loose pieces of glacier ice for birthing and nursing when sea ice was not available (Lydersen et al. 2014). Pupping occurs from late March to mid-May, with births occurring later in the year in the northern parts of the range. Peak pupping in Svalbard happens in early May, although newborn pups have been seen there as late as August (Gjertz et al. 2000).

Bearded seal pups are larger than other species of seal, at about 130 cm long and 45 kg at birth (Richard 2001). Pups are born with long wavy lanugo hair which is replaced by shorter, stiffer hair during the nursing period (Kovacs et al. 1996). The pup nurses for a period of 18 to 24 days, gaining weight very quickly at a rate of about 3.3kg/day (Lydersen et al. 1996). At weaning, its weight has often more than doubled to around 90 – 100 kg (Gjertz et al. 2000, Lydersen and Kovacs 1999).

Bearded seal pups are capable of swimming and following the adult female soon after birth (Hammill et al. 1994). A study of four nursing pups found that they spent about 53% of the time in the water, and were submerged for 42% of that time (Lydersen et al. 1994). Six of the seven pups tagged in a study at Svalbard dived deeper than 448 m by the time they were 2 months old (Gjertz et al.2000). This early swimming ability may have evolved so that the young can escape predation by polar bears, the bearded seal’s main predator. There is also evidence that pups are learning to catch and feed on small prey while they are still nursing (Lydersen et al. 1996).

Nursing females spend over 80% of their time in the water while caring for a dependent pup, and only haul-out to nurse on average three times a day (Lydersen and Kovacs 1999). This is also thought to be a response to polar bear predation, in that the pup alone on the ice is less conspicuous than both the pup and mother.

As in other phocid seals, the mother ovulates towards the end of the nursing period and mates after the pup is weaned (Kovacs 2016). Similar to other seals, bearded seals undergo embryonic diapause with implantation occurring in late July or early August.

bearded seal

© Worldfoto/Alamy

Adult male bearded seals produce very audible and musical vocalizations. In the Beaufort Sea, they were heard to produce calls year round, with activity increasing with the formation of pack ice in the winter and peaking in the spring, coinciding with the mating season (MacIntyre et al. 2013). These vocalizations, the most predominant being termed “trills”, have been estimated to be detectible from as far as 25 to 45 km away (Jones et al. 2014). Female bearded seals also vocalize, although not to the same extent (Mizuguchi et al. 2016).

Individual males have distinct vocalizations, which are thought to both be a means of defending their territory (Charrier et al. 2013) and of advertising their breeding condition (Mizuguchi et al. 2016). The duration of their vocalizations has been seen to differ depending on their mating strategy. Male bearded seals return to the same breeding location year after year (Jones et al. 2014). Some males occupy and defend the same territory over a series of consecutive years, while other males exhibit a “roaming” pattern, returning to the same general area but not to specific display locations (Van Parijs and Clark 2006, Van Parijs et al. 2004). These roaming males may be young males or mature males in poorer condition that are unable to maintain a territory (Van Parijs and Clark 2006). The vocalizations of each type of strategy varied for different locations – in Alaska, the roaming males had the longest calls, while in Svalbard the territorial males did (Van Parijs and Clark 2006).


Watch a video of a male bearded seal vocalizing and blowing bubbles


Males are aggressive towards each other during the breeding season, with displays of bubble-blowing and physical combat, indicating that the mating system is likely polygynous (Kovacs 2016). Mating occurs in the water, making it difficult to observe individual behaviour.

Moulting usually takes place after mating, between March and May, depending on the location, although bearded seals can be found shedding hair anytime from April to August (Kovacs 2016). While moulting, they spend much of their time hauled out (Gjertz et al. 2000).

Food and Feeding

Bearded seals are primarily benthic feeders, but their diet varies by age, location, and season. They have been characterised as a “foraging generalist” able to prey on a wide variety of items throughout their circumpolar range (Antonelis et al. 1994). See Cameron et al.(2010) for a full species list of prey items.

Fish constitute a major portion of the diet. In 15 or 19 bearded seals from the Canadian high Arctic, whose stomachs contained more than 1 kg food, fish made up over 90% of the wet weight (Finlay and Evans 1983). Twelve different species of fish were present in those stomachs, with sculpins (Cottidae) and arctic cod (Boreogadus saida) the most common.  A study of the stomach contents of 78 bearded seals in the Bering Sea found that 86% of the stomachs contained fish, including capelin (82%) and gadoids (64%)(Antonelis et al. 1994).

Capelin

Capelin

Other benthic invertebrates are important in the diet. Bearded seals can capture prey on the bottom, or use their broad muscular snouts to extract prey from the substrate by powerful suction and water-jetting (Marshall 2016). Their long mystacial vibrissae aid them in locating and identifying buried prey. The main invertebrate prey taken are benthic polychaetes, crustaceans, and molluscs. In Svalbard, benthic gastropods and decapods made up from 50–80% of the bearded seal diet (Hindell et al. 2012).

The whelk Buccinum and the shrimp Sclerocrangon boreas accounted for most of the invertebrate component of the diet in the Canadian High Arctic. Clams, cephalopods, anemones, sea cucumbers, polychaete worms and other invertebrates occurred in small amounts (Finlay and Evans 1983).

Bearded seal diets have been seen to change with changing ice conditions. In Svalbard, seal diets consisted of more pelagic fish species and fewer benthic invertebrates in the years with the most extensive fast ice, while the opposite was seen in the years when the fjords were relatively ice free (Hindell et al. 2012).

In the central Bering Sea, no differences were seen between the diets of males and females or between adults and juveniles, indicating no apparent change in the diet or feeding habits according to sex or age (Antonelis et al. 1994).

Predators

Polar bears are the main predators of bearded seals, and they are also taken by walruses, killer whales and Greenland sharks (Kovacs 2016, Cameron et al. 2010, Cleator 1996). Walruses appear to take primarily young seals, although it is not clear if they are preying directly on them or eating them as carrion (Cleator 1996).

polar bear eating bearded seal

Adult polar bear (Ursus maritimus) feeding on the remains of a bearded seal kill, Svalbard Archipelago, Norwegian Arctic © All Canada Photos/Alamy

Health and parasites

A wide variety of parasites have been found in bearded seals throughout their range. Parasitic worms are prevalent, including various species of cestodes, trematodes, nematodes and acanthocephalans. A complete species listing can be found in Cameron et al. (2010). The organs most commonly infected by helminth species are the stomach and intestinal tract, as well as the heart, gall bladder and lungs. Larvae of the nematode Trichinella has been found in bearded seals (Forbes 2000). This parasite can infect humans through the consumption of raw or undercooked meat and cause trichinosis.

Protozoan parasites are also found in some bearded seals. Intestinal contents from four bearded seals collected from Nunavik, Quebec, were analyzed for the presence of Giardia duodenalis and Cryptosporidium spp. Giardia duodenalis was present in three of the four seals, but Cryptosporidium spp. were not found (Dixon et al. 2008).

Relatively little is known about viral or bacterial diseases in bearded seals, or to what extent these might affect seal mortality.

Stock distribution, habitat, migrations

Bearded seals have a circumpolar distribution throughout much of the Arctic and sub-Arctic, and are found generally south of 85N. Their distribution is influenced by both their strong association with sea ice, which they need for critical life history activities such as reproduction and moulting, and by their need for areas of high benthic productivity for feeding. They typically occur alone or in small groups, in a patchy, low density distribution. Distinct stocks are not currently recognized.

In some areas, as in the Bering and Chukchi seas, they undergo seasonal movements with the advance and retreat of sea ice (Kovacs 2016). In other parts of their range they stay more or less in the same area year-round. Bearded seals prefer areas of moving pack ice and open water where the water depth is less than around 200 m, but they have been seen to maintain breathing holes in landfast ice or occupy deeper areas. In the open water season, bearded seals have been seen to enter river estuaries and haul out on land (Stewart and Lockhart 2005).

The Atlantic subspecies is found in Hudson Bay and much of the eastern Canadian Archipelago south to southern Labrador, and along both coasts of Greenland. They also occur along the north shore of Iceland, within the Svalbard Archipelago, and in the Barents Sea and across much of the north coast of the Russian Federation east to the Laptev Sea (Kovacs 2016). Individual seals have been found as far south as Portugal on the European side of the Atlantic. On the North American side, a bearded seal was seen in the harbour at Gloucester, Massachusetts (Sardi and Merigo  2006).

Bearded seals are not native to Iceland and are rarely seen in Icelandic waters. They do occasionally show up, usually along the north or northwest coast (Hauksson and Bogason 1995).

Bearded sub species

North Atlantic Stocks

To a biologist, a stock is a subpopulation of a species that is largely reproductively isolated from other stocks of the same species. As a result of this reproductive isolation, stocks can usually be differentiated genetically if they have been isolated for a sufficient length of time. Other means of stock differentiation include morphometrics (body size and shape), concentrations of pollutants or rare elements in tissues, behaviour, including vocal dialects, and patterns of seasonal movement. A key feature of this concept is that the hunting and possible depletion of one stock should have little or no effect on a neighbouring stock.

Note the square front flippers characteristic of bearded seals © Smudge 9000

© Smudge 9000

Bearded seals occur throughout the Arctic in a patchy, low density distribution. There may be distinct stocks or breeding populations, however not enough is known at this time in order to be able to delineate them and none are currently recognized.

Two subspecies of bearded seal are recognized: Erignathus barbatus barbatus and Erignathus barbatus nauticus. The E. b. barbatus subspecies is found from the central Canadian Arctic east to the central Eurasian Arctic (the “Atlantic” subspecies) while the “Pacific” subspecies, E. b. nauticus, occurs from the Laptev Sea east, including the Sea of Okhotsk to the central Canadian Arctic. There is still some discussion about where the boundary between the two subspecies should lie, however there is support for recognizing two subspecies from genetics studies (Davis et al. 2008), as well as from studies of geographical differences in the calls of bearded seals  (Charrier et al. 2013, Risch et al. 2007).

Current abundance and trends

Current population numbers and trends for bearded seals are not well known. There are several factors which make it difficult to accurately assess bearded seal populations. Firstly, their remote and broad distribution makes surveying them expensive and logistically challenging. As a result, population surveys for these and some other Arctic marine mammals are “infrequent, incomplete or simply non-existent” (Kovacs et al. 2011).  As well, the species’ range crosses several political boundaries and there has not been much international cooperation to conduct range‐wide surveys.

Estimates of the total world population of bearded seals have ranged from 500,000 to around 1 million (Cameron et al. 2010). Laidre et al. (2015) summarized known population data for bearded seals throughout their range, but described the data available as “poor and outdated”. The methods used to arrive at bearded seal population numbers have varied with time and location, making comparison of the numbers difficult.  Because of this, there are no reliable quantitative estimates of population trends for the species.

For most of the range of the Atlantic subspecies, E.b. barbatus, no population numbers or trends are known (Laidre et al. 2015). Cleator (1996) suggested a minimum population of 190,000 bearded seals for Canadian waters, but this number was based on summing different indices made between 1958 and 1979, rather than any direct population survey. The Greenland Institute of Natural Resources estimates that there are approximately 250,000 of the E.b. barbatus subspecies (GINR 2016).

bearded seal

© Gavin Brady, Alaska Fisheries Science Center, NOAA Fisheries Service

Stock status

Bearded seals occur throughout the Arctic in a patchy, low density distribution. There may be distinct stocks or breeding populations, however not enough is known at this time in order to be able to delineate them and none are currently recognized.

There is subsistence harvest of bearded seals throughout their range, though at low levels relative to other species of seals. Harvest rates for bearded seals in all countries are considered small relative to the local populations and harvesting is felt to have little impact on abundance (Cameron et al.2010). It is also generally thought that the distribution of these seals at relatively low densities over such a large area helps to protect them from overexploitation (GINR 2016).

© NOAA

© NOAA

Worldwide, bearded seals are placed in the IUCN Red List category of Least Concern (Kovacs 2016).  On Greenland’s Red List, the bearded seal is categorized as “Not Threatened” (GINR 2016), while in Canada the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) defines the status as “Data Deficient” (DFO 2016).

In 2012, bearded Seals were listed under the US Endangered Species Act following a detailed review of their status (Cameron et al. 2010). The listing was not due to current population concerns, but because of the threats posed from climate change and increasing industrial activities in the Arctic.

Management

There is no international governing body which regulates the hunting of bearded seals. Advice on the management of bearded seals may be provided by the North Atlantic Marine Mammal Commission (NAMMCO). If requested by a member country, the NAMMCO Scientific Committee will prepare advice on the size of a sustainable harvest based on existing data, which the Management Committee will use to propose measures for conservation and management to member countries.

Greenland

In Greenland, management of marine mammals is carried out by local governments who can make by-laws restricting hunting by area, season, or hunting method. All hunters must have a permit and provide catch records.  Bearded seals may be harvested year-round, and there are no Total Allowable Catches (TACs) or allocations set.  There are some restrictions on the hunting of seals in Melville Bay Nature Reserve and in the national park in North and East Greenland (Cameron et al. 2010). Management advice is provided to the Greenland government through NAMMCO (Laidre et al. 2015).

Norway

Bearded seals are not usually found along the mainland coast, and no quotas are set under the Norwegian Marine Resources Act for hunting this species. In Svalbard waters, the harvest of bearded seals is managed under the Svalbard Environmental Protection Act (Cameron et al. 2010).

Licensed hunters can shoot bearded seals in Svalbard during the open season, outside of protected areas such as nature reserves and national parks. There is no TAC set for Svalbard, and only a small number of seals are taken each year.

Canada

Bearded seals in Canada are co-managed by the federal Department of Fisheries and Oceans and regional resource management boards such as the Nunavut Wildlife Management Board. Bearded seals are included in the 2011-2015 Integrated Fisheries Management Plan for Atlantic Seals (DFO 2016), though there are currently no TACs or allocations set. If there was to be any commercial harvest, licences and permits would be required.  Harvest of bearded seals for subsistence purposes is allowed throughout the year (DFO 2016).

Russia

In Russia, the “Law of Fisheries and Preservation of Aquatic Resources” provides for subsistence harvest of Seals by aboriginal Russian peoples, and a TAC for the commercial harvest is determined annually by the Russian Federal Fisheries Agency. Russia is the only nation to set a quota on the number of bearded seals that can be harvested (Kovacs 2016).

Recent harvests

umiaks boats made of bearded seal

Upernavik, Greenland. Traditional umiaks (boats) made from driftwood or whalebone frame and walrus or bearded seal skins © Hemis/Alamy

There is currently legal subsistence harvest of bearded seal throughout its range (Laidre et al. 2015). Bearded seals have a tough, flexible hide which is valued for many purposes, such as lines or rope, kayak coverings, and kamik (boot) soles. The meat is also suitable for human and dog food (Hovelsrud et al. 2008).

Greenland

In Greenland bearded seals are hunted year-round. During the winter in North Greenland they are hunted by their breathing holes in the ice and by netting close to shore, in spring they are hunted while basking on the sea ice, and in summer they are hunted in open water from boats (Hovelsrud et al. 2008).

From 2005 to 2007, between 1454 and 1773 bearded seals were taken in Greenland (NAMMCO 2009). More recently (2011 to 2013), catches have dropped slightly, with between 990 and 610 taken in West Greenland and 312 to 186 in East Greenland (NAMMCO 2014).

Catches of bearded seals in Greenland and Norway (Svalbard) between 1994 and 2017. From National Progress Reports and Governor of Svalbard, 2015.

These figures do not include seals that were “struck and lost”, or not retrieved during the hunt.

Norway

Bearded seals were harvested commercially around Svalbard for several centuries, although they were taken more opportunistically in the hunt for other species. Currently, it is legal for licensed hunters to harvest bearded seals in Svalbard outside of the breeding season, and a few are taken each year. Bearded seals may not be hunted in any of Svalbard’s national parks and nature reserves.

Iceland

Bearded seals are occasionally found near Iceland, where they may be opportunistically hunted by local hunters (Hauksson and Bogason 1995).

Canada

In Canada, bearded seals are hunted year-round for subsistence, from the ice in winter and from boats during the open water season. The Nunavut Wildlife Harvest Study, which ran from June 1996 to May 2001, documented harvests of from 584 to 786 bearded seals a year in Nunavut. The five year average was 735 seals (Priest and Usher 2004).

Russia

Bearded seals have been commercially harvested by Russia in the Sea of Okhotsk and the Bering Sea with annual catches that exceeded 10,000 animals in some years during the 1950s and 1960s. There were indications of possible overexploitation in these areas , which led to a suspension of ship‐based sealing in both the Sea of Okhotsk and the Bering Sea from 1970 to 1975, and the imposition of annual total allowable catches (TACs) (Cameron et al. 2010). The 2010 TAC for the Sea of Okhotsk was 2,100. TACs for the White and Barents Seas in 2010 were 20 and 50 respectively, and 150 for the Kara Sea. (Cameron et al. 2010). None of the TACs include harvesting for subsistence purposes.

EU sealskin ban and the Inuit exemption

In 1983, in response to concerns about the Canadian commercial harp seal harvest, the European Economic Community imposed an import ban on all harp seal whitecoat products. The ban, which was initially for 2 years, has been extended since then and was expanded in 2009 to include all seal products (DFO 2016).

Exceptions to the ban include products resulting from Inuit/indigenous harvests; products for the sole purpose of sustainable management of marine resources; and products for the personal use of travelers to the EU. As well, the ban does not apply to seal products trans-shipped through the EU to non-EU destinations (DFO 2016).

In order for seal products to be exempted from the ban and placed on the market in the EU the Inuit or indigenous harvest must meet certain conditions. The hunt must:

  • be traditionally conducted by the community
  • contribute to the community’s subsistence in order to provide food and income and not be primarily conducted for commercial reasons
  • pay due care to animal welfare, while taking account of the community’s way of life and the subsistence purpose of the hunt (EUR-Lex 2016).

By-catch

By-catch, or entanglement in fishing nets or other gear, is not a significant source of mortality for bearded seals, as these seals are not generally found in areas where commercial fishing is taking place. The by-catch reported for bearded seal in Iceland for 2013 was 1, caught in a lumpfish net (NAMMCO 2014). In commercial fisheries in the Bering Sea – Aleutian Islands, a mean annual mortality of 1.0 bearded seal was observed from 2002 – 2006 (Cameron et al. 2010).

Struck and lost

Struck and lost refers to seals which are struck and assumed to be killed during the hunt, but are not recovered. Struck and loss rates vary greatly depending on the age of the seal taken, the hunter’s experience, and the weather conditions at the time of the hunt. Cameron et al. (2010) suggests struck and loss rates in the Alaskan hunt are from 25 to 50%. These may have been based on Cleator’s (1996) estimates that struck and loss may be up to 50% in open water, and approximately 25 % on ice.

Climate change

Bearded seals are very dependent on sea ice year-round, requiring stable ice pans in late spring for raising pups and moulting as well as summer ice for resting. Ice for the pupping and nursing periods must also be in suitable areas, over shallow waters with a rich benthic community , to provide food at this important stage of the life cycle (Kovacs et al. 2011).

bearded seal

© Peter Prokosch/GRID Arendal

Global climate warming is currently causing major reductions in both the extent and duration of sea ice cover in the Arctic, which poses a threat to bearded seals and other marine mammals which depend on ice. Bearded seals will lose critical pupping and nursing habitat if suitable ice floes are not available (Hindell et al. 2012, Kovacs et al. 2011), which could result in a lowering of the carrying capacity of their habitat (Laidre et al. 2015).

Bearded seals may also have to move further north in order to find suitable ice, restricting their distribution and range. This could result in increased completion for food, which may be increased if other temperate species also move north due to habitat change (Kovacs et al. 2011).

Around Svalbard, bearded seals have been observed using pieces of calved glacier ice as haul-out platforms, possibly in response to loss of sea ice (Lydersen et al. 2014). In other areas, bearded seals use land as a summer haul- out platform, so they may be better able to cope with increasing loss of sea ice than other Arctic seals. However, the current lack of baseline data for bearded seals makes monitoring any current or future changes in their populations due to climate change difficult.

Shipping / Oil spills

Another potential threat to bearded seals brought about by climate change is increasing ship traffic in the Arctic due to reduced ice cover and more open water. The dramatic decline in Arctic sea ice extent over the past few years has raised the possibility of regular cargo traffic using both the Northern Sea Route and the Northwest Passage (Laidre et al. 2015, Hovelsrud et al. 2008). Shipping traffic in the Arctic is also predicted to increase due to other activities, including resource extraction and tourism (Laidre et al. 2015, Hovelsrud et al. 2008). One example of this is the year-round shipping through Baffin Bay, planned for the Mary River iron ore project, which will affect the wintering grounds for bearded seal (NAMMCO 2015).

Ship traffic could affect bearded seals and their habitat through their emissions or an accidental fuel spill, could affect the ecosystem by introducing invasive species, or disrupt the seals themselves with their movements and noise. An increase in noise in the arctic environment could cause bearded seals to abandon areas of habitat they otherwise might use (Kovacs 2016, Laidre et al. 2015). Increasing ship traffic could also lead to an increase in seals being struck by vessels.

Offshore extraction and transportation of oil and gas could affect bearded seals either through direct contact with oil from an accidental spill, or through damage to their habitat and/or prey species.

Contaminants

Bearded seals are exposed to contaminants which are transported to the Arctic from other locations such as perfluorinated contaminants, organochlorines, and heavy metals such as mercury.

Mercury in particular is a concern, as it has been found in numerous species across the Arctic in concentrations which exceed guidelines for adverse effects, and which may be increasing over time (Dietz et al. 2013). Mercury is a persistent substance which bioaccumulates in living organisms. A recent study in Alaska found both mercury and selenium in bearded seal tissues, with the highest levels found in the liver (Correa et al. 2015).

Persistent organochlorine contaminants, including polychlorinated biphenyls(PCBs) , Dichlorophenyltrichloroethane (DDT)- and chlordane (CHL) related compounds, have been found in bearded seal tissues in both the White Sea (Muir et al. 2003) and around Svalbard (Bang et al. 2001).

Perfluorinated contaminants (PFCs), such as perfluorooctane sulfonate (PFOS) and related synthetic compounds are used as industrial and commercial surfactants and stain repellents.  These compounds were found in bearded seals taken from the Bering and Chukchi Seas, though at low levels compared to other species (Quackenbush and Citta 2008).

Research on bearded seals in Greenland is conducted by the Greenland Institute of Natural Resources (GINR). Ongoing research includes analysis of sound recordings from moorings in West and East Greenland looking at seasonal distribution and movements of bearded seals, especially in relation to seismic activities (NAMMCO 2015).  Greenland also participated in a joint survey with Canada of the eastern part of the North Water polynya in April 2014, to document the importance of this area for overwintering bearded seals and other marine mammals. There has been work on satellite tracking, and some diet samples have been collected (NAMMCO 2016).

In Norway, research on bearded seals in undertaken by the Norwegian Polar Institute with most of the work being done in Svalbard. There has been some passive acoustic monitoring to record bearded seal and other marine mammal vocalizations. This leads to information about bearded seal distribution throughout the year.  Bearded seals have also been tagged, and this work is ongoing (Lydersen et al. 2014).

References

Andersen, M., Hjelset, A. M., Gjertz, I., Lydersen, C. and Gulliksen, B. 1999. Growth, age at sexual maturity and condition in bearded seals (Erignathus barbatus) from Svalbard, Norway. Polar Biol. 21: 179-185.


Antonelis, G. A., Melin, S.R. and Bukhtiyarov,  Y. A. 1994. Early Spring Feeding Habits of Bearded Seals (Erignathus barbatus) in the Central Bering Sea, 1981. Arctic 47:74-79.


Bang, K., Jenssen, B.M., Lydersen, C. and Skaare, J.U. 2001. Organochlorine burdens in blood of ringed and bearded seals from north-western Svalbard. Chemosphere 44(2):193-203.


Cameron, M. F.,  Bengtson, J.L.,  Boveng, P.L.,  Jansen, J.K.,  Kelly,  B.P., Dahle, S.P.,  Logerwell, E.A.  Overland, J.E., Sabine, C.L.,  Waring, G.T. and Wilder, J.M. 2010. Status review of the bearded seal (Erignathus barbatus ). U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-211, 246 p.


Charrier, I., Mathevo, N. and Aubin, T. 2013. Bearded seal males perceive geographic variation in their trills. Behav. Ecol. Sociobiol. 67:1679–1689.


Cleator, H.J. 1996. The status of the bearded seal, Erignathus barbatus, in Canada. Canadian Field Naturalist 110: 501-510.


Correa, L., Castellini, J. M., Quackenbush, L.T. and O’Hara, T.M. 2015. Mercury and Selenium concentrations in skeletal muscle, liver, and regions of the heart and kidney in bearded seals from Alaska, USA. Environmental Toxicology and Chemistry 34(10): 2403–2408.


Davis, C.S., Stirling, I., Strobeck, C. and Coltman, D.W. 2008. Population structure of ice‐breeding seals. Molecular Biology 17: 3078‐3094.


DFO 2016. Dept. of Fisheries and Oceans Canada. 2011-2015 Integrated Fisheries Management Plan for Atlantic Seals  http://www.dfo-mpo.gc.ca/fm-gp/seal-phoque/reports-rapports/mgtplan-planges20112015/mgtplan-planges20112015-eng.htm    Accessed 14 Dec. 2016


Dietz,R., Sonne, C., Basu, N., Braune, B., O’Hara, T., Letcher, R.J., Scheuhammer. T., Andersen, M., Andreasen, C., Andriashek, D., Asmund, G., Aubail, A., Baagøe, H., Born, E.W., Chan, H.M., Derocher, A.E., Grandjean, P., Knott, K., Kirkegaard, M., Krey, A., Lunn, N., Messier, F., Obbard, M., Olsen, M.T., Ostertag, S., Peacock, E., Renzoni, A., Riget, F.F., Skaare, J.U., Stern, G., Stirling, I., Taylor, M., Wiig, Ø., Wilson, S., Aars, J. 2013. What are the toxicological effects of mercury in Arctic biota? Sci. Total Envi. 443: 775–790.


Dixon, B. R., Parrington, L.J., Parenteau, M.,  Leclair, D., Santín, M. and Fayer, R. 2008. Giardia duodenalis and Cryptosporidium spp. in the intestinal contents of ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus) in Nunavik, Quebec, Canada. Journal of Parasitology 94:1161‐1163.


EUR-Lex  2016. Access to European Union Law. http://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX:32009R1007&qid=1455217489306 Accessed 15 Dec. 2016.


Finlay, K. and Evans, C. R. 1983. Summer Diet of the Bearded Seal (Erignathus barbatus) in the Canadian High Arctic. Arctic 36: 82-89.


Forbes, L. B. 2000. The occurrence and ecology of Trichinella in marine mammals. Veterinary Parasitology 93:321‐334.


GINR (Greenland Institute of Natural Resources). 2016.  http://www.natur.gl/en/birds-and-mammals/marine-mammals/bearded-seal/  Accessed 15 Dec. 2016.


Gjertz, I., Kovacs, K. M., Lydersen, C. and Wiig, Ø. 2000. Movements and diving of bearded seal (Erignathus barbatus) mothers and pups during lactation and post-weaning. Polar Biol. 23: 559-566.


Hammill, M., Kovacs, K.M. and Lydersen, C.  1994.  Local movements by nursing bearded seal (Erignathus barbatus) pups in Kongsfjorden, Svalbard.  Polar Biol. 14: 569–570.


Hauksson, E., and Bogason, V. 1995. Occurrences of bearded seals (Erignathus barbatus Erxleben, 1777) and ringed seal (Phoca hispida Schreber, 1775) in Icelandic waters, in the period 1990‐1994, with notes on their food. Council Meeting of the International Council for the Exploration of the Sea CM 1995/N:15.


Hindell, M.A., Lydersen, C., Hop, H. and Kovacs, K.M. 2012. Pre-Partum Diet of Adult Female Bearded Seals in Years of Contrasting Ice Conditions. PLoS ONE 7(5):e38307. doi:10.1371/journal.pone.0038307


Hovelsrud, G.K.,  McKenna, M. and Huntington, H.P. 2008. Marine mammal harvests and other interactions with humans.  Ecological Applications 18, special issue 2: S135-S147.


Jones, J.M., Thayre, B.J.,  Roth, E. H., Mahoney, M., Sia, I., Merculief, K.,  Jackson, C., Zeller, C., Clare, M., Bacon, A., Weaver, S., Gentes, Z., Small, R.J., Stirling, I., Wiggins, S.M., Hildebrand,J. A. and  Giguère, N. 2014. Ringed, Bearded, and Ribbon Seal Vocalizations North of Barrow, Alaska: Seasonal Presence and Relationship with Sea Ice.  Arctic 67(2): 203-222.


Kovacs, K.M. 2016. Erignathus barbatus. The IUCN Red List of Threatened Species 2016: e.T8010A45225428. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T8010A45225428.en.  Accessed 9 December 2016.


Kovacs, K.M., Moore, S., Overland, J.E. and Lydersen, C. 2011. Impacts of changing sea-ice conditions on Arctic marine mammals. Marine Biodiversity 41: 181-194.


Kovacs, K.M., Lydersen, C. and Gjertz, I. 1996. Birth-site characteristics and prenatal molting in bearded seals (Erignathus barbatus). Journal of Mammalogy 77(4): 1085-1091.


Laidre, K.L., Stern, H., Kovacs, K.M., Lowry, L., Moore, S.E., Regehr, E.R., Ferguson, S.H., Wiig, Ø., Boveng, P., Angliss, R.P., Born, E.W., Litovka, D., Quakenbush, L., Lydersen, C., Vongraven, D. and Ugarte, F. 2015. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conservation Biology 29: 724-737.


Lydersen, C. and Kovacs, K. M. 1999. Behaviour and energetics of ice-breeding, North Atlantic phocid seals during the lactation period. Marine Ecology Progress Series 187: 265-281.


Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler J., Kovacs, K.M., Reigstad, M., Steen, H., Strøm, H., Sundfjord, A., Varpe, Ø., Walczowski, W., Weslawski, J.M. and Zajaczkowski, M. 2014. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems 129: 452-471.


Lydersen, C., Kovacs, K.M. , Hammill, M.O. and Gjertz, I. 1996. Energy intake and utilization by nursing bearded seal (Erignathus barbatus) pups from Svalbard, Norway.   J. Comp. Physiol. B 166: 405-411.


Lydersen, C., Hammill, M.O. and Kovacs, K.M. 1994. Diving activity in nursing bearded seal (Erignathus barbatus) pups. Can. J. Zool. 72: 96-103


MacIntyre, K.Q., Stafford, K.M., Berchok, C. L. and Boveng, P.L.  2013. Year-round acoustic detection of bearded seals (Erignathus barbatus) in the Beaufort Sea relative to changing environmental conditions, 2008–2010. Polar Biol. 36:1161–1173.


Marshall, C.D. 2016.  Morphology of the bearded seal (Erignathus barbatus) muscular– vibrissal complex: a functional model for phocid subambient pressure generation. The Anatomical Record 299:1043–1053.


Mizuguchi, D., Tsunokawa, M., Kawamoto, M. and Kohshima, S. 2016. Sequential calls and associated behavior in captive bearded seals (Erignathus barbatus ). Journal of the Acoustical Society of America 140(4): 3238-3238.


Muir, D., Savinova, T., Svinov, V., Alexeeva, L., Potelov, V. and Svetochev, V. 2003. Bioaccumulation of PCBs and chlorinated pesticides in seals, fishes and invertebrates from the White Sea, Russia. Sci. Total Envi. 306(1-3):111-131.


NAMMCO. 2016. Report of the 23rd meeting of the NAMMCO scientific committee.  Nuuk, Greenland  4-7 November 2016. 291 pp.


NAMMCO 2015. Annual report 2015.North Atlantic Marine Mammal Commission (NAMMCO). 374 p.


NAMMCO. 2014. Annual report 2014.North Atlantic Marine Mammal Commission (NAMMCO). 246 p.


NAMMCO. 2009. Annual Report 2007‐2008. North Atlantic Marine Mammal Commission (NAMMCO). 399 p.


Priest, H. and Usher, P.J. 2004. The Nunavut Wildlife Harvest Study. Nunavut Widlife Management Board. 816 p.


Quackenbush, L.T. and Citta, J.J. 2008. Perfluorinated contaminants in ringed, bearded, spotted, and ribbon seals from the Alaskan Bering and Chukchi Seas.  Marine Pollution Bulletin 56:1802–1814.


Richard, P. 2001. Marine mammals of Nunavut. Qikiqtani School Operations, Iqaluit NU pp.98


Risch, D., Clarke, C.W., Cockeron, P.J., Elepfandt, A., Kovacs, K.M., Lydersen, C., Stirling, I. and Van Parijs, S.M. 2007. Vocalizations of male bearded seals, Erignathus barbatus: classification and geographical variation. Animal Behavior 73: 747-762.


Sardi, K. A. and Merigo, C. 2006.  Erignathus barbatus (Bearded seal) Vagrant in Massachusetts. Northeastern Naturalist 13: 39-42.


Stewart, D.B. and Lockhart, W.L. 2005. An overview of the Hudson Bay marine ecosystem. Can. Tech. Rep. Fish. Aquat. Sci. 2586: vi + 487 p.


Van Parijs, S.M. and Clark, C.W. 2006. Long-term mating tactics in an aquatic-mating pinniped, the bearded seal, Erignathus barbatus. Animal Behaviour 72(6):1269 – 1277.


Van Parijs, S.M., Lydersen, C. and Kovacs, K.M. 2004. The effects of ice cover on the behavioural patterns of aquatic mating male bearded seals. Animal Behavior 68: 89-9.

Start typing and press Enter to search