Beluga

Updated: October 2016

The beluga, or white whale, is a medium-sized toothed whale. Beluga whales have stout bodies, flexible necks and a disproportionately small head with a well defined beak and a prominent forehead bulge or “melon”. They have short but broad paddle-shaped flippers, no dorsal fin, a narrow ridged back and a broad tail fluke with a deeply notched centre. Adult beluga whales grow to lengths of 3-5 m, and can weigh up to 1,500 kg. Males grow slightly larger than females. Newborns are brown or slate-grey in colour and average 1.6 m in length and 78 kg in weight. They become bluish-grey as they mature, then progressively lighten in colour, fading to white after 6 years of age.

ABUNDANCE

Across the Arctic there are at least 180,000 belugas. In the NAMMCO area, over 10,000 belugas occur off West Greenland in the fall, winter and spring. Another population can be found year-round around Svalbard, and while the abundance in this area is unknown, a survey is planned for 2018.

DISTRIBUTION

Belugas are found in Arctic and sub-Arctic waters, in areas that are seasonally ice-covered. They are found in the northern waters of the US (Alaska), Canada, Greenland, Norway and Russia.

RELATION TO HUMANS

Hunted for food throughout their range, except for Svalbard where they are protected. Past commercial harvesting reduced numbers in some areas.

CONSERVATION AND MANAGEMENT

The Eastern High Arctic stock of belugas is a shared stock between Greenland and Canada, and an international management regime under the Joint Commission for the Conservation and Management of Narwhal and Beluga (JCNB). The JCNB and NAMMCO hold Joint Scientific Working Group meetings to provide scientific advice to the JCNB and NAMMCO.

In West Greenland, after hunting quotas were introduced harvests have been reduced and the stock is thought to be recovering from previous overhunting.

The other beluga stock in the NAMMCO area is the Svalbard stock. These belugas are protected.

GROM - the Global Review of Monodontids meeting organised by NAMMCO and held in 2017. See more in the "Stock Status" section.
GROM - the Global Review of Monodontids meeting organised by NAMMCO and held in 2017. See more in the "Stock Status" section.

© Jade V. Garcia / Norwegian Polar Institute

Latin: Delphinapterus leucas

Faroese: Hvítfiskur
Greenlandic: Qilalugaq qaqortaq
Icelandic: Mjaldur
Norwegian: Hvithval

English: The English name “beluga” comes from the Russian word belukha, which means “white”.

Size

Adult beluga whales grow to lengths of 3–5 m, and can weigh up to 1,500 kg. Males grow slightly larger than females

Productivity

One calf every 2–3 years from 7–12 years of age

Lifespan

85–90 years

Migration

Throughout their range belugas inhabit cold Arctic waters, living amongst pack ice, in leads and polynyas in winter and migrating to shallow bays and estuaries of large northern rivers in the summer

Feeding

Mainly fish, particularly polar cod (Boreogadus saida) and Arctic cod (Actogadus glacialis). Also northern shrimp (Pandalus borealis) and squid in some areas and times

General Characteristics

Beluga whales have stout bodies, flexible necks and a disproportionately small head with a well defined beak and a prominent forehead bulge or “melon”. They have short but broad paddle-shaped flippers, no dorsal fin, a narrow ridged back and a broad tail fluke with a deeply notched centre. The generic name “delphinapterus”, meaning “dolphin-without-a-wing” reflects the absence of a dorsal fin.

Did You Know?

A very special neck

Unlike other cetaceans, belugas can move their head up, down, and side-to-side because their cervical vertebrae are not fused. This adaptation is believed to help them manoeuver and catch prey in silt-laden or ice-covered areas.

Life History and Ecology

beluga calf

Image: Calvin L Hooper

Adult beluga whales grow to lengths of 3–5 m, and can weigh up to 1,500 kg. Males grow slightly larger than females. Newborns are brown or slate-grey in colour and average 1.6 m in length and 78 kg in weight. They become bluish-grey as they mature, then progressively lighten in colour, fading to white after 6 years of age. Most females mature sexually while still light grey, while males become white before maturing. Older males have a marked upward curve at the tip of their flippers.

Beluga mate in the early spring, and calving occurs a little over a year later. Calving for beluga in the Canadian High Arctic population occurs mainly during early July to early August, although calves have been reported there as early as May 31, and as early as late March off west Greenland (Koski et al. 2002). Recent research has shown that belugas may have lifespans of 80 years or more (Stewart et al. 2006).

Watch belugas in the Gulf of St Lawrence

Feeding

Polar cod

Polar cod

Polar cod (Boreogadus saida) and Arctic cod (Actogadus glacialis) were found to contribute more than any other item to the diet of beluga in the Upernavik area in Greenland (Heide-Jørgensen and Teilmann 1994). Polar cod was also found to be the principle food item for Canadian High Arctic and Svalbard beluga (Koski et al. 2002, Dahl et al. 2000). Squid beaks were commonly found in beluga stomachs from western Greenland. Other prey items found were redfish (Sebastes marinus), halibut (Reinhardtius hippoglossoides) and northern shrimp (Pandalus borealis) (Heide-Jørgensen and Teilmann 1994). Polar cod was also found to be the main prey item for beluga in Russian waters, with various whitefishes (Coregonidae) contributing to the diet in summer (Boltunov and Belikov 2002).

Capelin

Capelin

Capelin (Mallotus villosus) are an important food for belugas in the St. Lawrence River and also in Hudson Bay (Kingsley 2002). Other important food items were sand-lance (Ammodytes spp.), Atlantic cod (Gadus morhua), tomcod (Microgadus tomcod), decapod and amphipod crustaceans and polychaete worms.

Young beluga begin feeding on fish and invertebrates after their first year, but may continue to take milk from their mothers during their second year of life (Heide-Jørgensen and Teilmann 1994). As the animals grow, they are able to take larger food items, and gradually switch from benthic to more pelagic foraging.

Predation

Recent reductions in Arctic sea ice have made the area more accessible to the killer whale, which is a major predator of belugas. An increased frequency of killer whale sightings has been noted in many areas of the eastern Canadian Arctic (Higdon and Ferguson 2009). This may result in an increase in predation pressure and a concomitant decrease in survival in some beluga populations. You can read more about killer whale predation on belugas here.

Polar bears are also predators for beluga whales. You can watch a video of a polar bear catching beluga whales that have been entrapped in ice below.

Watch a polar bear hunting belugas

DISTRIBUTION

Beluga whales have a discontinuous circumpolar distribution, and in general occur only in seasonally ice-covered parts of Arctic and sub-Arctic seas. Some isolated populations, however, extend into subarctic regions as far south as the St. Lawrence River in Canada.

HABITAT

Photo: Vicki Beaver, Alaska Fisheries Science Centre, NOAA.

© Vicki Beaver, Alaska Fisheries Science Centre, NOAA.

Throughout their range belugas inhabit cold Arctic waters, living amongst pack ice, in leads and polynyas in winter and migrating to shallow bays and estuaries of large northern rivers in the summer. Their seasonal movements depend on both oceanographic conditions (primarily the dynamics of ice cover) and the distribution of their primary prey species (Boltunov and Belikov 2002). Belugas usually travel in pods of 2 to 10 whales, although larger pods are not uncommon. Females with young are found in calm shallow waters along reef edges, close to islands and in large bays. These areas have a warm surface temperature and sand, gravel or mud bottoms that support molluscs, crustacea and bottom fish. Adults and weaned young prefer areas where the water depth varies, where surface temperatures are cold, and where there are reef bottoms of sand and gravel or deep bottoms of sandy mud and coarse material.

Belugas swimming in ice-choked waters. Note the lack of dorsal fin. Photo M. P. Heide-Jørgensen, Greenland Institute of Natural Resources

Belugas swimming in ice-choked waters. Note the lack of dorsal fin. © M. P. Heide-Jørgensen, Greenland Institute of Natural Resources

DIFFICULTIES IN STOCK IDENTIFICATION

Because of their annual migration patterns, and with difficulties in sampling and studying these animals in the field, stock identification for beluga is currently not well defined. Determination of stocks for beluga is particularly important since in several areas beluga numbers have declined considerably over the past century. Because people wish to continue to hunt beluga, it is essential to have knowledge of stock structures, their distribution and population sizes in order to determine sustainable harvest levels.

USING GENETICS AND MIGRATION ROUTES

Genetic studies have been used to try to differentiate beluga stocks, though results have not been as clear cut as with some other animals. Difficulties arise in using genetics for beluga because adequate sampling designs are hard to achieve (de March et al. 2002). Sample numbers are sometimes lower than desired, due to the difficulty and expense of obtaining samples, and sampling is usually concentrated in areas and times where belugas are hunted rather than throughout their seasonal range. Additionally, because beluga are social animals and occur in pods of closely related animals, sampled animals may be close relatives rather than random individuals from a stock (Palsbøll et al. 2002). These difficulties mean that genetic studies alone will probably not be enough to define beluga stocks, and that a combination of methods and information is needed. For beluga, the annual migration path and the hunters who have access to the whales along this path may best describe the term “stock” (Innes et al. 2002b).

A further complication arises because different genetic analyses yield conflicting results for beluga. Analysis of mitochondrial DNA from beluga harvested in and around Hudson Bay suggests that several separate stocks inhabit the area (Turgeon et al. 2012). In contrast, there is little evidence of separate stocks from analyses of nuclear DNA. As mitochondrial DNA is inherited maternally only, this suggests that maternally-led “cultural” stocks go to separate summering areas, but mix together during the mating season. This also means that hunters in the same community might take a single stock during the summer, but a mixture of two or more at other times of the year.

A recent genetic study has however revealed that beluga stocks can be divided into two major groups: (1) Arctic (Svalbard–White Sea–Greenland–Beaufort Sea), and (2) Subarctic (Gulf of Alaska) regions (O’Corry-Crowe et al. 2010). This study suggests a deep divergence between the two major groupings, but periodic gene flow within them, probably during warm periods with lighter ice cover. A further deep division has been found between the St Lawrence River and Eastern Hudson Bay populations and all other Canadian and Greenlandic populations (COSEWIC 2004, de March et al. 2002). The former grouping might have originated from an Atlantic glacial refugium, while the other areas may have been colonized from the west.

STOCKS/SUMMER AGGREGATIONS in the NAMMCO area

Svalbard

Belugas are resident around Svalbard year round. During summer they spend most of their time close to glacier fronts (Lydersen et al. 2001). When the sea-ice forms they are “pushed” further offshore, but remain close to Svalbard.

Belugas are rare along the east coast of Greenland, likely due to lack of suitable habitat. Whales which do appear there from time to time probably belong to the Svalbard population (Dietz et al. 1994; NAMMCO 2018).

There are two stocks of belugas present east of Svalbard: the Barents-Kara-Laptev stock and the White Sea stock. The information that is available does not suggest a link between these stocks and the Svalbard stocks (NAMMCO 2018).

Eastern High Arctic – Baffin Bay

beluga-ca-gl-map-and-legend-web

The Eastern High Arctic – Baffin Bay (also called “Somerset Island”) stock of belugas (blue on the map) is a shared stock between Canada and Greenland. These animals form a “summer aggregation” that spends the summer mainly in the Canadian High Arctic archipelago, with some animals also in Smith Sound.

In the fall, some beluga from this stock migrate to western Greenland where they stay during the winter, while others winter in the “North Water” polynya in Baffin Bay and Smith Sound (Richard et al. 2001, NAMMCO 2013). The two wintering areas are shown on the map.

Belugas from the segment of the stock that migrate along the west coast of Greenland can be found from Qaanaaq in the north to Paamiut in the south in the fall, winter and spring. Belugas are rare along this coast in summer (NAMMCO 2000). Beluga migrate past the Upernavik region in October and are found later in the fall and winter between Disko Bay and Sisimiut (NAMMCO 2000). Heide-Jørgensen et al. (2003) estimated that the proportion of animals moving to West Greenland in the winter was approximately 15% (95% confidence limit 6-35%) based on satellite tagging data.

Other Beluga stocks

Ungava Bay

This population of belugas was originally defined by their summering area. It is thought that this population may have been extirpated, or if it still exists, has very low numbers (DFO 2004). Past genetics studies showed high levels of genetic diversity (Mancuso 1995, Smith and Hammill 1986), however belugas from Ungava Bay may now be part of other populations (DFO 2004).

Eastern Hudson Bay

Easter Hudson Bay belugas are genetically different from Western Hudson Bay belugas (Mancuso 1995, Brennin et al. 1997, Brown-Gladden et al. 1997, de March and Postma 2003). They spend the summer mainly in coastal waters extends from Kujjuarapik to Inukjuak, but they can also be found in offshore waters (Smith and Hammill 1986, Kingsley 2000, Gosselin et al. 2002).

Recent studies indicate that belugas in James Bay may be a separate population from the rest of the Eastern Hudson Bay population (Bailleul et al. 2012). In this study, belugas captured and tagged in James Bay remained very close to where they were captured, while the majority of Eastern Hudson Bay belugas migrated between distinct summer and wintering areas. Bailleul et al. (2012) suggested that decreases in sea ice in recent years may have made James Bay a suitable area for belugas to remain year-round, while ice conditions in the rest of Eastern Hudson Bay still make it necessary for the belugas there to migrate.

Western Hudson Bay

Beluga, Hudson Bay Photo: Ansgar Walk

Beluga, Hudson Bay © Ansgar Walk

The beluga of Western Hudson Bay are a large, possibly diverse stock that may contain several sub-stocks, including Northern Hudson Bay, Foxe Basin, and Southern Hudson Bay. The Western Hudson Bay belugas contain many genetic similarities to all other Canadian beluga populations, yet are genetically distinguishable. More information is needed to understand the population structure.

Cumberland Sound

The Cumberland Sound stock summers in the inner part of Cumberland Sound and winters beyond the ice edge near the mouth of the Sound (DFO 2002a). They are considered a separate population based on results from satellite tagging, genetics, organochlorine contaminant signatures, and traditional knowledge (Kilabuk 1998).

St Lawrence River

The St Lawrence River is a small population that is thought to have once been part of the Arctic populations (DFO 2004). There does not appear to be any geographic overlap with the other current populations of belugas, and they are also genetically distinct from all the other populations (DFO 2004).

Photo M. P. Heide-Jørgensen, Greenland Institute of Natural Resources

© M. P. Heide-Jørgensen, Greenland Institute of Natural Resources

Current Abundance and Trends

Estimating the abundance of beluga is difficult due to the remoteness and large size of their distribution area and the mobility of the animals. Aerial surveys are most commonly used, but the results obtained must be corrected for both whales at the surface missed by observers, plus those that are below the surface out of sight when the survey airplane is overhead. Another problem is that direct comparisons between surveys are not always possible, since surveys rarely have the same timing or cover the same area.

SVALBARD

There is no abundance estimate or trend information from this area, but a first-ever survey is planned for July-August 2018.

Eastern High Arctic – Baffin Bay (Including West Greenland)

The most recent estimate is from an aerial survey in 1996 which estimated there to be 21,213 belugas (95% CI 10,985 to 32,619; Innes et al. 2002a) in the Eastern High Arctic – Baffin Bay summer aggregation. This estimate takes into account both whales missed by observers and those that might be unseen due to diving behaviour. Previous estimates from the early 1970s gave a very rough estimate of 10,000 belugas (Koski et al. 2002), and surveys conducted in the late 1970s estimated that 10,250 to 12,000 belugas were involved in the fall migration out of the central Arctic (Koski et al. 2002).

Any apparent trends of increase or decline in this population are difficult to assess since the confidence intervals for all estimates are quite large. Although this stock is likely depleted from it’s historical size, there is evidence of an increasing trend. More recent surveys in west Greenland have shown an increasing number of belugas in the segment of this stock that migrate to west Greenland (see the “Stock Status” section).

Beluga whales at bellsund, Svalbard © T, Jacobsen

Aerial surveys flown in west Greenland between 1981 and 1994 found that beluga numbers decreased by 62% during that period, probably because of over-harvesting (Heide-Jørgensen and Reeves 1996). Further surveys in 1998 and 1999 confirmed the decline and found 7,941 (95% CI: 3650–17,278) belugas in West Greenland, including whales missed by the observers and whales that were submerged during the survey (Heide-Jørgensen and Acquarone 2002). New management measures (see below) may have reversed the decline, and the most recent survey carried out in 2006 revealed an abundance of 10,595 (95% CI: 4,904–24,650) (NAMMCO 2010).

Any apparent trends of increase or decline in this population are difficult to assess since the confidence intervals for all estimates are quite large. In addition, some proportion of these animals winter off West Greenland, an area where a decline in numbers has been observed (see below). Though beluga here were subject to commercial hunting in the past, hunting pressure today in Canada on these animals is low (NAMMCO 2000), but is higher for those beluga which migrate to Greenland.

While direct harvest is low in the Canadian High Arctic, a component of this stock is subject to harvest off West Greenland during the fall migration, and in northern Greenland during the summer. There is evidence that the stock that winters in West Greenland is severely depleted (see below). However there is no evidence from surveys conducted in the Canadian High Arctic that the number of beluga occupying this area has declined (Innes et al. 2002a, Koski et al. 2002). More information is needed about stock structure in this area.

Other stocks outside the NAMMCO area

Barents-Kara-Laptev

One estimate, made in 1939, gave a population of 40,000 to 50,000 beluga in the Barents, Kara and Laptev Seas (Boltunov and Belikov 2002). These numbers are very rough, and were based on observations of beluga during mass inshore movements in the fall. Another estimate made later guessed that from 15,000 to 20,000 beluga inhabited the White, Barents and Kara Seas (Boltunov and Belikov 2002).

White Sea

Abundance estimates from aerial surveys conducted in 2005 – 2011 indicate that there are at least 5,000 animals in the summer in the White Sea (Glazov et al. 2008, 2010а,b).

Ungava Bay

Ungava Bay was formerly a summering area for beluga, but these appear to have been largely extirpated by past commercial and subsistence over-harvesting. Only very small numbers of belugas are observed there now, and the present summer stock size is thought to be fewer than 50 animals (Doniol-Valcroze and Hammill 2011) These animals may be remnants of the former stock, or transient or re-colonising animals (NAMMCO 2000).

Eastern Hudson Bay

The most recent estimates are from a 2015 aerial survey which estimated 3,819 belugas (CV=0.43; corrected for a; Gosselin et al. 2017) and population modelling which estimated 3,443 (95% CI: 2014-5471; Hammill et al. 2017) belugas.

A total of seven visual systematic aerial surveys have been flown to evaluate Eastern Hudson Bay abundance since 1985, however these surveys used different methods, making it difficult to compare them to the 2015 survey. The trend appears to be stable, however.

James Bay

The most recent abundance estimate is from a survey in 2015 which resulted in an estimated 10,615 (CV = 0.25; corrected for availability) belugas in James Bay (Gosselin et al. 2017). The stock has been surveyed a total of seven times since 1985, however different methods were used, making it difficult to compare the estimates. The trend appears to be increasing, although there is considerable uncertainty in the estimates.

Western Hudson Bay

The WHB beluga stock has been surveyed in 1987, 2004, and 2015. The most recent  abundance estimate from this stock is 54,473 (cv = 0.098, 95% CI = 44,988–65,957; Matthews et al. 2017), although this does not include the Ontario coast where about 14,000 belugas were seen during the 2004 survey (Richard 2005).  It is difficult to compare the results of the 2015 with previous surveys because of differences in the areas covered and also in the correction factors used in calculating the abundance estimate, however the stock appears to be stable (NAMMCO 2018).

Cumberland Sound

The most recent abundance estimate is based on an aerial survey in 2014 which estimated 1,151 (CV=0.21) belugas in Cumberland Sound (Marcoux et al. 2016). Although aerial surveys have been conducted 8 previous times since 1980, it is not possible to directly compare the 2014 estimate to previous estimates because these surveys surveyed a smaller area. However, population modelling suggests that the stock is declining (Marcoux and Hammill 2016) and the experts at the Global Review of Monodontids gave this stock a high level of concern (NAMMCO 2018).

St. Lawrence River

The original size of this stock is unknown, but it has been back calculated to be in the low thousands. It has been estimated that about 16,000 animals were taken from the population between 1870 and 1960 (Kingsley 2002). This harvest, which was for commercial products, to protect fisheries, and for recreation, was uncontrolled and led to serious depletion of the population. Studies in the early and mid 1970s found numbers in the low hundreds, and all hunting was prohibited in 1979 (Kingsley 2002). Presently the stock size is thought to be around 889 (95% CI 672 to 1167; Mosnier et al. 2015)

The population appears to have stabilized at a level that is depleted relative to the historical stock size, and the lack of further recovery is of concern (Hammill et al. 2007). Potential threats to this population include pollution (Hobbs et al. 2003) and anthropogenic noise (McQuinn et al. 2011). While some have postulated that there is a high rate of cancer in this population based on the examination of stranded carcasses (Martineau et al. 2002), this interpretation is controversial (Hammill et al.2003). This population is classified as “threatened” by COSEWIC.

Stock Status

Svalbard

Russians harvested belugas at Svalbard beginning in the 18th century. Little information is available on catch numbers, but the best known year is 1818, when a crew overwintering caught about 1,200 belugas (Gjertz and Wiig 1994). Norwegians also began hunting belugas at Svalbard in 1866, and continued up until the early 1960s. Over that period, more than 15,000 animals were taken (Gjertz and Wiig 1994). Belugas are thought to migrate to Svalbard in April or May, from wintering areas in the Barents Sea.

Eastern High Arctic – Baffin Bay

An aerial survey in 1996 estimated there to be 21,213 belugas (95% CI 10,985 to 32,619; Innes et al. 2002a) in the Eastern High Arctic – Baffin Bay summer aggregation. This estimate takes into account both whales missed by observers and those that might be unseen due to diving behaviour. Previous estimates from the early 1970s gave a very rough estimate of 10,000 belugas (Koski et al. 2002), and surveys conducted in the late 1970s estimated that 10,250 to 12,000 belugas were involved in the fall migration out of the central Arctic (Koski et al. 2002).

Any apparent trends of increase or decline in this population are difficult to assess since the confidence intervals for all estimates are quite large. Although this stock is likely depleted from it’s historical size, there is evidence of an increasing trend. More recent surveys in west Greenland have shown an increasing number of belugas in the segment of this stock that migrate to west Greenland (see below).

Reviewing the status of all belugas and narwhals

© All Canada Photos/ Alamy

In March 2017, NAMMCO organised a Global Review of Monodontids (GROM), which discussed the conservation status, threats, and data gaps for all stocks of belugas and narwhals globally. The last review was done almost 20 years ago, and a large amount of new information has become available since then, especially on stock identity, movements, abundance, and threats to the populations. Additionally, there are many new stressors that have emerged in the last 20 years, especially related to climate change.

Stock experts representing Greenland, Canada, Alaska, Russia, the Government of Nunavut, Nunavut Tunngavik, Inc., the Inuvialuit Settlement Area and the Nunavik Wildlife Management Board participated.

The report can be found here and a publication is in preparation for peer review.

Commercial harvesting of beluga in west Greenland and Baffin Bay began in the late 1800s. Their occurrence in west Greenland has changed over the past 90 years, largely due to changes in hunting patterns. The introduction of motor boats to the area in the early 20th century led to increased catches. After a period with large catches in Nuuk (from 1906–22) and in Maniitsoq (1915–29), beluga disappeared from the area south of 66° N (Heide-Jørgensen and Acquarone 2002). Between 1927 and 1951, large catches were reported in the southern part of the municipality of Upernavik, and since 1970 in the northern part. Catches in this area in the 1990s were about 700 whales per year (Heide-Jørgensen and Rosing-Asvid 2002).

DECLINE, SOUND MANAGEMENT, AND RECOVERY

Photo: Kristin Laidre

© Kristin Laidre

Concern over the decline of the West Greenland stock led to introduction of regulations during the 1990s with the intention of reducing catches. The drive hunt, which was the main method of beluga capture, was prohibited in 1995 (Heide-Jørgensen and Rosing-Asvid 2002).

The Scientific Committee of NAMMCO in 2000 advised that the West Greenland stock was substantially depleted and that delay in reducing the catch to about 100 animals per year would result in further population decline and would further delay the recovery of this stock (NAMMCO 2001). In 2004, a quota of 320 beluga per year was established for West Greenland. Catches and quotas have fluctuated since then, with catches ranging from 120 to 290 for West Greenland.

There is evidence that these new management measures may have already had a positive effect on the population (Heide-Jørgensen et al. 2016). Recent assessments indicate that a harvest of up to 310 animals per year will allow the population to continue to recover, and that current harvest levels are therefore sustainable (NAMMCO 2010, 2012a).

Other nearby beluga stocks

Barents-Kara-Laptev and White Sea stocks

Beluga exploitation in Russia goes back several centuries, although there is little data available on population or harvest numbers. One estimate, made in 1939, gave a population of 40,000 to 50,000 beluga in the Barents, Kara and Laptev Seas (Boltunov and Belikov 2002). These numbers are very rough, and were based on observations of beluga during mass inshore movements in the fall. Another estimate made later guessed that from 15,000 to 20,000 beluga inhabited the White, Barents and Kara Seas (Boltunov and Belikov 2002).

Harvests in Russia were quite variable, depending on the timing of migration and the numbers of animals moving inshore. The harvest did not likely cause any appreciable change in the population (Boltunov and Belikov 2002). One exception seems to be in the period 1954 to 1966, when annual harvests were high, averaging 1,500 individuals per year. This caused a noticeable decline in the number of beluga approaching Nova Zemlya and entering Baidaratskaya Inlet and Yugorskiy Shar Strait (Boltunov and Belikov 2002). Fewer whales were taken in the following decades.

Ungava Bay

Ungava Bay was formerly a summering area for beluga, but these appear to have been largely extirpated by past commercial and subsistence over-harvesting (Boulva 1981, Finley et al. 1982). Hunting closures came into effect in the late 20th century, however there are only occasional sightings of belugas in the summer in Ungava Bay now, and the stock may now be extirpated (NAMMCO 2018).

Eastern Hudson Bay

In Eastern Hudson Bay, the population was subject to a large commercial harvest. This caused the fishery to experience a rapid decline by the late 1800s (de March and Postma 2003). Subsistence hunting continued after that time, but it was not until the 1980s that concerns about this population arose. Although there is some uncertainty in the available data, it seems that this population has declined from about 4,000 whales in 1985 to 2,000 in 2001. Although recent management measures may have stabilized the population and even allowed some increase, it is still highly vulnerable to decline at current harvest levels (Doniol-Valcroze et al. 2011). The stock is presently classified as endangered by COSEWIC.

James Bay

James Bay also has a large summering population, probably exceeding 10,000 animals (DFO 2002c). Recent research has shown that at least some beluga are resident in James Bay year-round (Balleul et al. 2012). Belugas are not hunted in this area, however they may be subject to exploitation elsewhere (de March and Postma 2003).

Western Hudson Bay

The beluga of Western Hudson Bay are a large, possibly diverse stock that may contain several sub-stocks, including Northern Hudson Bay and Foxe Basin, Southern Hudson Bay and James Bay.  The coast of southern Hudson Bay has several large rivers where belugas congregate in the summer. The stock is clearly genetically distinguishable from that of Eastern Hudson Bay.

Western Hudson Bay has a large number of summer resident beluga. A partial survey in 1987 reported 25,100 beluga (95% CI 18,300 to 52,800) (NAMMCO 2000), while a more complete survey conducted in 2004 estimated 57,300 (95% CI 37,700 to 87,100) (Richard 2005). Harvest of this group is estimated to be from 130 to 200 animals a year, which is likely a sustainable number for such a large group (NAMMCO 2000).

Cumberland Sound

Commercial hunting of beluga occurred in this area, starting in the late 1800s. It is estimated that 7,000 animals were taken between 1868 and 1939, not counting those which were struck and lost, mainly in Cumberland Sound (DFO 2002b), and this level of harvest caused a reduction in the population. Quotas were introduced to restrict the hunt in Cumberland Sound in the 1980’s, and the population appears to have recovered somewhat since that time (DFO 2002a).

St. Lawrence River

The original size of this stock is unknown, but it has been back calculated to be in the low thousands. It has been estimated that about 16,000 animals were taken from the population between 1870 and 1960 (Kingsley 2002). This harvest, for commercial products, to protect fisheries and for recreation, was uncontrolled and led to serious depletion of the population. Studies in the early and mid 1970s found numbers in the low hundreds, and all hunting was prohibited in 1979 (Kingsley 2002). Presently the stock size is thought to be around 1,100 animals (Hammill et al. 2007, Kingsley 2002).

The population appears to have stabilized at a level that is depleted relative to the historical stock size, and the lack of further recovery is of concern (Hammill et al. 2007). Potential threats to this population include pollution (Hobbs et al. 2003) and anthropogenic noise (McQuinn et al. 2011). While some have postulated that there is a high rate of cancer in this population based on the examination of stranded carcasses (Martineau et al. 2002), this interpretation is controversial (Hammill et al. 2003). This population is classified as “threatened” by COSEWIC.

Management

Beluga inhabit the waters of two NAMMCO member states: Norway and Greenland. Norway does not presently permit the harvest of beluga in its territory. The stock of beluga that winters off West Greenland summers in Arctic Canada; therefore management is a shared responsibility between Greenland and Canada. Greenland and Canada have therefore established a bilateral management body, the Canada/Greenland Joint Commission on the Conservation and Management of Narwhal and Beluga (JCNB). The JCNB has a Scientific Working Group which meets jointly with the NAMMCO Scientific Committee Working Group on the Population Status of Narwhal and Beluga in the North Atlantic. This scientific body provides advice at the request of the JCNB and NAMMCO, pertaining to such issues as stock delineation, total allowable catches and threats to beluga and narwhal populations. The JCNB Commission meets periodically to receive this advice and provide management advice to Canada and Greenland.

The Ministry of Fisheries, Hunting and Agriculture is responsible for regulating beluga whaling in Greenland. Regulations govern the seasons in which belugas can be hunted and the weapons and equipment that may be used for beluga hunting. Successful whale hunts must be reported to municipal authorities to facilitate monitoring of the harvest. Compliance with quotas and other regulations is monitored by wildlife officers at the local level.

SCIENCE-BASED SOUND MANAGEMENT GIVES RESULTS

Greenland has set quotas for beluga in response to JCNB and NAMMCO advice. In 2004, a quota of 320 beluga per year was established for West Greenland. Catches and quotas have fluctuated since then, with catches ranging from 120 to 290 for West Greenland.

There is evidence that these new management measures may have already had a positive effect on the population (Heidi-Jørgensen et al 2016). Recent assessments indicate that a harvest of up to 310 animals per year will allow the population to continue to recover, and that current harvest levels are therefore sustainable (NAMMCO 2010, 2012a).

STATUS ACCORDING TO OTHER ORGANIZATIONS

Belugas are currently listed on Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (as are all species of cetaceans not listed on Appendix I). CITES is a legally-binding multilateral environmental agreement that aims to ensure that international trade does not threaten the survival of species in the wild. Both Denmark (Greenland) and Norway are signatories to the convention. A listing on Appendix II means that an export permit shall only be granted when the Scientific Authority of the State of export has advised that such export will not be detrimental to the survival of the species in the wild.

On the IUCN “Red list” belugas are listed as Near Threatened in an assessment made in 2008 (Jefferson et al. 2012).

© All Canada Photos/ Alamy

UTILISATION

Belugas have long been a staple food resource for indigenous peoples throughout the Arctic, and continues to be an important part of northern diets today. Historically, the beluga was used for many purposes (Kilabuk 1998, Sejersen 2001). The skin and attached subcutaneous fat was and is considered a delicacy called muktuk (various spellings and pronunciations, including maktaaq and mattak). The meat varied in quality depending on the cut and was eaten raw, dried or cooked, or used as dog food. Sometimes the meat and muktuk was aged and prepared in specific ways to make traditional delicacies. The flippers, organs and intestines were also used as food. The skin from the top part of the whale was cut and prepared to make rope, and the tendons were used to make sinew for sewing. The blubber was rendered to oil and used in traditional lamps (qulliq) as a source of light and heat. Even the bones were used as a food source, construction material and for carving. While many of these uses have been replaced by modern materials, beluga muktuk and meat are still an important and welcome part of the diet in some areas of Arctic Canada and Greenland.

HUNTING

The following descriptions of hunting methods in Canada and Greenland were taken from the NAMMCO Expert Group Meeting to Assess the Hunting Methods for Small Cetaceans, held in 2011 (NAMMCO 2012b).

In West Greenland and Canada, beluga are hunted during the spring, summer and fall from small boats, at the ice edge or at ice cracks. In some areas of West Greenland, the kayak is still in use for hunting. In this type of hunting, the animal is approached quietly by one or two kayaks, and the hunter uses a hand-held harpoon with a detachable head (Greenlandic: tuukaak). The harpoon head is attached by a line to a float (Greenlandic: quataq) and then to drag or brake (Greenlandic: miutak) which slows the wounded animal. The hunter then shoots the whale with a high-powered rifle when it resurfaces.

Similar hunting methods are used from small motor boats and from the ice in Greenland and Canada. Ideally, the whale is harpooned first to secure it; it is thereafter dispatched using a rifle. In some cases, the harpoon strike alone is sufficient to kill the animal. In other cases, the beluga is shot first to wound it and slow it down so it can be secured using a harpoon and line.

In the far north of Greenland and in some areas of Canada, nets are used to capture beluga. This technique is used particularly during the dark seasons and in very heavy ice conditions. The beluga swim into the net, become entangled and will drown in they cannot surface. If they remain alive, they are shot by the hunter when the net is checked.

Historically, the catch of beluga or other large animal was divided and shared among participating hunters and their extended families according to complex traditional rules (Inuktitut ningiqtuq, Greenlandic ningerpoq) that helped to ensure that the entire camp or community received a portion of the catch (Wenzel 1995, Sejersen 2001). More recently, the regulation of beluga hunting and changing hunting methods and equipment have led to changes in the sharing system (Sejersen 2001). In Greenland particularly, part of the catch is sold in the open-air markets (Greenlandic Kalaalimineerniarfik, Danish brædtet) present in every village and town. This provides a welcome source of income for hunters. Commercial sale of beluga products is not widespread in Nunavut, although this is starting to change.

RECENT HARVESTS IN GREENLAND

Recent catches of beluga in West Greenland. 1992-1998 from Heide-Jørgensen and Rosing-Asvid (2002), 1999-2003 are from NAMMCO Annual Reports. 2004-2013 are from Greenland Department of Fisheries, Hunting and Agriculture (DFFL).
1- Harvest from 1 July in given year until 1 June the following year. After 2011, catches follow calendar year.
2- Qaanaaq, including Savissivik has a block quota of 100 belugas for a 5 year period (2009/10-2013/14), or an average of 20 belugas per year.

SHIPPING NOISE

With few exceptions, belugas inhabit isolated areas subject to seasonal ice cover that are not frequently used as shipping lanes. The southernmost beluga stock, however, inhabits the St Laurence River in Canada, one of the busiest shipping routes in the world. Here they are subject to high levels of noise, both from ships and whale-watching operations (McQuinn et al. 2011). The population-level consequences of this to this threatened population are unknown, however belugas do appear to become habituated to some levels of noise over time.

CONTAMINANTS

Moreso than for other Arctic marine mammal species, the beluga whale is susceptible to contaminant exposure because of its habit of occupying river estuaries during parts of the summer. Rivers carry pollutants from inland and therefore tend to be more contaminated than offshore marine areas. One population particularly susceptible to marine contaminants is the St Laurence River stock, because its habitat is the densely populated and heavily polluted St Lawrence River basin (DFO 2012). However some other stocks, particularly those inhabiting northeastern Russia, may also be exposed to high levels of contaminants.

 

contamination_pathways_large-photo-fraxen-wikipediaBelugas are top predators in the marine food web and therefore tend to accumulate relatively high levels of some contaminants in their tissues. Particularly high levels of organic contaminants, such as pesticides, are found in the fatty blubber layers, to the extent that
beach-cast belugas in the St Lawrence must sometimes be treated as toxic waste.

Contaminants can affect survival in several ways, including increasing the rates of chronic diseases such as cancers, and disrupting the immune system and increasing vulnerability to pathogens and parasites. They can also disrupt the reproductive system and decrease reproductive success (DFO 2012). While the extent to which contaminants are actually affecting the survival and reproduction at the population are not known, contaminants are considered to be a major threat to the St Lawrence population (DFO 2012). A relatively high incidence of cancerous tumours has been observed in beach-cast carcasses, leading some to link this to environmental contamination (Martineau et al. 2002); however this conclusion remains controversial mainly because the incidence of cancer in the general population is difficult to infer from the incidence in carcasses (Hammill et al. 2003).

EFFECTS OF CLIMATE CHANGE?

In recent years, the eastern part of Baffin Bay and Davis Strait has had lighter pack ice cover during the winter and spring. Beluga have responded to this by extending their winter distribution farther west and north. This also affects the success of hunters in West Greenland: they must range further from the coast to gain access to beluga in light ice years. These effects demonstrate the influence of climate change on this stock of beluga (Heide-Jørgensen et al. 2010).

ENTRAPMENTS

Like narwhals and bowheads, belugas are susceptible to occasional entrapments in sea ice which can, if prolonged, lead to their death by starvation, suffocation, predation or human harvesting (Heide-Jørgensen et al. 2002, see also here). While this is a form of natural mortality that belugas as a species have survived throughout their history, it is possible that human activities, particularly seismic exploration within beluga habitat, might disrupt migration timing or routes in such a way as to increase the frequency of entrapments. Possible incidences of this have been observed for narwhal (Heide-Jørgensen et al. 2013) and similar occurrences are possible for belugas. In addition, climate change might also disrupt migration patterns in such a way as to change the frequency of entrapments.

COMMERCIAL FISHING

Most beluga stocks inhabit areas with little or no commercial fishing. Again, the St Laurence River stock is exceptional in this regard as it lives year-round in an area with heavy commercial fishing (DFO 2012). Declines in several fish stocks, some of which are important in the beluga diet, have been documented in this area, but it is not known if this is having a population-level effect on the stock.

Commercial fisheries, primarily for Greenland halibut (Reinhardtius hippoglosoides), have expanded into Baffin Bay and Davis Strait, which provides the overwintering habitat for some stocks of belugas (DFO 2007, Laidre et al. 2004). While Greenland halibut are a primary prey species for narwhal, they are less important for belugas which tend to consume more pelagic prey species.

Research in NAMMCO Member Countries

Research carried out by Greenland has included the collection and analysis of samples for genetic studies, the application of satellite tags, and abundance surveys. The latter have provided important information on the size of the population of whales wintering off West Greenland, and the trends in abundance over time. Ten surveys have been carried out off West Greenland since 1981, and most recently in 2008 (Heide-Jørgensen and Acquarone 2002, Heide-Jørgensen et al. 2010, NAMMCO 2010). These surveys have covered an area from Disko Island in the north, south as far as Paamiut in some years, from short out to as far as 80km from the coast. The surveys have been conducted by aircraft, using experienced observers who record data using distance sampling techniques. The more recent surveys have also used video and still photography to record ice and environmental conditions, and to collect images of whales.

Tagging a beluga in Svalbard, Norway. Photo: K. Kovacs-C. Lydersen / Norwegian Polar Institute

Tagging a beluga in Svalbard, Norway. © K. Kovacs-C. Lydersen / Norwegian Polar Institute

It is rare to have over 30 years of survey data on distribution and abundance of any species, and this provides a rich source of data for assessing the possible impacts of a changing climate on an Arctic species. Heide-Jørgensen et al. (2010) use these surveys to demonstrate the recent trend towards lighter winter ice cover off West Greenland has led to a shift in beluga distribution to more offshore areas. Beluga apparently take advantage of the reduced ice cover offshore to access areas that were inaccessible to them in previous years. This offers hope that this species might be flexible enough to adapt to a rapidly changing climate.

Tagging of beluga in Svalbard, Norway. Photo: K. Kovacs-C. Lydersen / Norwegian Polar Institute

Tagging of beluga in Svalbard, Norway. © K. Kovacs-C. Lydersen / Norwegian Polar Institute

Greenland has also been involved in elucidating the seasonal movements of belugas through the use of satellite-linked transmitter/receivers. These compact devices, often referred to as “satellite tags”, are attached to captured whales which are then released. The tags collect data on diving behaviour and movements, which are transmitted via satellite during the brief period when the tag breaches the sea surface.

Beluga whales are usually captured by isolating individuals or small groups and driving them slowly to shore using small boats. The whales are then immobilized on the beach using nets and ropes, and the tag is surgically attached to the dorsal ridge. The tags transmit for 2-3 months on average; communication with the tag is lost once it falls off the whale (Richard et al. 2001).

The tag is attached using plastic bolts through the dorsal ridge. It transmits data to a satellite when the whale surfaces. The tags fall off usually in less than 6 months. Photo: K. Kovacs-C. Lydersen / Norwegian Polar Institute

The tag is attached using plastic bolts through the dorsal ridge. It transmits data to a satellite when the whale surfaces. The tags fall off usually in less than 6 months. © K. Kovacs-C. Lydersen / Norwegian Polar Institute

While it has proven difficult to tag beluga during their winter occupation of West Greenland waters, Greenland researchers have been involved in tagging operations in Arctic Canada. These applications have demonstrated conclusively that some belugas that summer in Arctic Canada do migrate to West Greenland for the winter (Richard et al. 2001). The tags have also provided important data on diving that has been used to derive correction factors for aerial surveys.

Similar techniques have been used by Norwegian researchers to monitor the movements and diving behaviour of beluga around Svalbard. Here belugas do not seem to make long-distance migrations, remaining within the archipelago throughout most of the year (Lydersen et al. 2001). An innovative application of tagging was to use belugas as oceanographic “adaptive samplers” to monitor temperature and salinity in areas that are normally inaccessible to research vessels because of ice conditions (Lydersen et al. 2002).

Greenland researchers have also been heavily involved in genetic studies of beluga populations. These studies use small samples collected from beluga hunts, tagging operations and in some cases, biopsies. While the social structure of beluga populations has made the interpretation of genetic data challenging (de March et al.2002, Palsbøll et al. 2002), genetic studies have been successful in discriminating the major divisions in beluga populations.

Alvarez-Flores, C.M. and Heide-Jørgensen, M.P. 2004. A risk assessment of the sustainability of the harvest of beluga Delphinapterus leucas (Pallas 1776) in West Greenland. ICES J. Mar. Sci. 61:274- 286. doi: http://dx.doi.org/10.1016/j.icesjms.2003.12.004


Bailleul, F., Lesage, V., Power, M., Doidge, D.W. and Hammill, M.O. 2012. Differences in diving and movement patterns in two groups of beluga whales in a changing Arctic environment reveal discrete populations. Endangered Spec. Res. 17:27-41. http://dx.doi.org/10.3354/esr00420


Boltunov, A. N. and Belikov, S.E. 2002. Belugas (Delphinapterus leucas) of the Barents, Kara and Laptev seas. NAMMCO Scientific Publications 4:149-168. http://dx.doi.org/10.7557/3.2842


COSEWIC 2004. COSEWIC assessment and update status report on the beluga whale Delphinapterus leucas in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 70 pp.


Dahl, T., Lydersen, C., Kovacs, K.M., Falk-Petersen, S., Sargent, J., Gjertz, I. and Gulliksen, B. 2000. Fatty acid composition of the blubber in white whales (Delphinapterus leucas). Polar Biol. 23:401-409. http://dx.doi.org/10.1007/s003000050461


de March, B.G.E. and Postma, L.D. 2003. Molecular genetic stock discrimination of belugas (Delphinapterus leucas) hunted in Eastern Hudson Bay, Northern Quebec, Hudson Strait, and Sanikiluaq (Belcher Islands), Canada, and comparisons to adjacent populations. Arctic 56:111-124.


de March, B.G.E., Maiers, L.D. and Friesen, M.K. 2002. An overview of genetic relationships of Canadian and adjacent populations of belugas (Delphinapterus leucas) with emphasis on Baffin Bay and Canadian eastern Arctic populations. NAMMCO Scientific Publications 4:17-38. http://dx.doi.org/10.7557/3.2835


DFO 2002b. Underwater World – The Beluga. Canadian Department of Fisheries and Oceans, Communications Directorate. Ottawa, ON.


DFO 2002a. Cumberland Sound Beluga. Stock Status Report E5-32. Canadian Department of Fisheries and Oceans, Central and Arctic Region, Winnipeg, MB.


DFO 2002c. Northern Quebec (Nunavik) Beluga (Delphinapterus leucas). Stock Status Report E4-01. Canadian Department of Fisheries and Oceans, Quebec Region, Mont-Joli, QC.


(DFO) Department of Fisheries and Oceans Canada. 2007. Development of a Closed Area in NAFO 0A to protect Narwhal Over-Wintering Grounds, including Deep-sea Corals. DFO Can. Sci. Advis. Sec. Sci. Resp. 2007/002.


DFO. 2012. Recovery Strategy for the beluga whale (Delphinapterus leucas) St. Lawrence Estuary population in Canada. Species at Risk Act Recovery Strategy Series. Fisheries and Oceans Canada, Ottawa. 88 pp + X pp.


Dietz, R., Heide-Jørgensen, M. P., Born, E. W. and Glahder, C. M. 1994. Occurrence of narwhals (Monodon monoceros) and white whales (Delphinapterus leucas) in East Greenland. Meddelelser om Grønland Bioscience 39:69-86.


Doniol-Valcroze, T, Hammill, M. O. and Lesage, V. 2011. Information on abundance and harvest of eastern Hudson Bay beluga (Delphinapterus leucas). DFO Can. Sci. Advis. Sec. Res. Doc. 2010/121. iv + 13 p.


Doniol-Valcroze, T. and Hammill, M.O. 2011. Information on abundance and harvest of Ungava Bay beluga. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/126.


Ferguson, S.H., Higdon J., Chmelnitsky E.G. 2010. The Rise of Killer Whales as a Major Arctic Predator. In S.H. Ferguson et al. (eds.), A Little Less Arctic: Top Predators in the World’s 117 Largest Northern Inland Sea, Hudson Bay, DOI 10.1007/978-90-481-9121-5_6,


Gjertz, I. and Wiig, Ø. 1994. Distribution and catch of white whales (Delphinapterus leucas) at Svalbard. Meddelelser om Grønland Bioscience 39:93-97.


Hammill, M.O., Kingsley, M.C.S. and Lesage, V.. “Cancer in Beluga from the St. Lawrence Estuary. (Correspondence).” Environmental Health Perspectives 111.2 (2003): A77+. Academic OneFile. Web. 24 Oct. 2012.


Hammill, M.O., Measures, L.N., Gosselin, J.-F. And Lesage, V. 2007. Lack of recovery in St. Lawrence Estuary beluga. Canadian Science Advisory Secretariat Research Document 2007/26.


Heide-Jørgensen, M.P. and Acquarone, M. 2002. Size and trends of the bowhead whale, beluga and narwhal stocks wintering off West Greenland. NAMMCO Scientific Publications 4:191-210. http://dx.doi.org/10.7557/3.2844


Heide-Jørgensen, M.P. and Reeves, R.R. 1996. Evidence of a decline in beluga, Delphinapterus leucas, abundance off West Greenland. ICES J. Mar. Sci. 53:61-72.


Heide-Jørgensen, M.P. and Rosing-Asvid, A. 2002. Catch statistics for belugas in West Greenland 1862 to 1999. NAMMCO Scientific Publications 4:127-142. http://dx.doi.org/10.7557/3.2840


Heide-Jørgensen, M.P. and Teilmann, J. 1994. Growth, reproduction, age structure and feeding habits of white whales (Delphinapterus leucas) in West Greenland waters. Meddelelser om Grønland Bioscience 39:195-212.


Heide-Jørgensen, M.P., Guldborg Hansen, R., Westdal, K., Reeves, R.R. and Mosbech, A. 2013. Narwhals and seismic exploration: Is seismic noise increasing the risk of ice entrapments? Biol. Cons. 158:50-54.


Heide-Jørgensen, M.P., Laidre, K.L., Borchers, D., Marques, T.A., Stern, H. and Simon, M. 2010. The effect of sea-ice loss on beluga whales (Delphinapterus leucas) in West Greenland. Polar Res. 29:198-208.


Heide-Jørgensen, M.P., Richard, P., Dietz, R., Laidre, K.L., Orr, J. and Schmidt, H.C. 2003. An estimate of the fraction of belugas (Delphinapterus leucas) in the Canadian High Arctic that winter in West Greenland. Polar Biol. 26:318-326.


Heide-Jørgensen, M.P., Richard, P., Ramsay, M. and Akeeagok, S. 2002. Three recent ice entrapments of Arctic cetaceans in West Greenland and the eastern Canadian High Arctic. NAMMCO Scientific Publications 4:143-148. http://dx.doi.org/10.7557/3.2841


Higdon, J.W. and Ferguson, S.H. 2009. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century. Ecol. Appl. 19:1365-1375.


Hobbs, K.E., Muir, D.C.G., Michaud, R., Beland, P., Letcher, R.J. and Norstrom, R.J. 2003. PCBs and organochlorine pesticides in blubber biopsies from free-ranging St. Lawrence River Estuary beluga whales (Delphinapterus leucas), 1994-1998. Env. Poll. 122:291-302.


Innes, S. and Stewart, R.E.A. 2002. Population size and yield of Baffin Bay beluga (Delphinapterus leucas) stocks. NAMMCO Scientific Publications 4:225-238. http://dx.doi.org/10.7557/3.2846


Innes, S., Heide-Jørgensen, M.P., Laake, J.L., Laidre, K.L., Cleator, H.J., Richard, P., and Stewart, R.E.A. 2002a. Surveys of belugas and narwhals in the Canadian High Arctic in 1996. NAMMCO Scientific Publications 4:169-190. http://dx.doi.org/10.7557/3.2843


Innes, S., Muir, D. C. G., Stewart, R. E. A., Heide-Jørgensen, M. P. and Dietz, R. 2002b. Stock identity of beluga (Delphinapterus leucas) in Eastern Canada and West Greenland based on organochlorine contaminants in their blubber. NAMMCO Scientific Publications 4:51-68. http://dx.doi.org/10.7557/3.2837


Jefferson, T.A., Karkzmarski, L., Laidre, K., O’Corry-Crowe, G., Reeves, R., Rojas-Bracho, L., Secchi, E., Slooten, E., Smith, B.D., Wang, J.Y. and Zhou, K. 2012. Delphinapterus leucas. The IUCN Red List of Threatened Species. Version 2014.2


Kilabuk, P. 1998. A study of Inuit knowledge of the Southeast Baffin beluga. Report for the Southeast Baffin Beluga Management Committee. Nunavut Wildlife Management Board, Iqaluit, NT. 74 p.


Kingsley, M. C. S. 2002. Status of the belugas of the St. Lawrence estuary, Canada. NAMMCO Scientific Publications 4:239-258. http://dx.doi.org/10.7557/3.2847


Koski, W.R., Davis, R.A. and Finley, K.J. 2002. Distribution and abundance of Canadian High Arctic belugas, 1974-1979. NAMMCO Scientific Publications 4:87-126. http://dx.doi.org/10.7557/3.2839


Laidre, K.L., Heide-Jørgensen, M.P., Jørgensen, O.A. and Treble, M.A. 2004. Deep-ocean predation by a high Arctic cetacean. ICES J. Mar. Sci. 61:430-440.


Lydersen, C., Martin, A.R., Kovacs, K.M. and Gjertz, I. 2001. Summer and autumn movements of white whales Delphinapterus leucas in Svalbard, Norway. Mar. Ecol. Progr. Ser. 219:265-274.


Lydersen, C., Nøst, O.A., Lovell, P., McConnell, B.J., Gammelsrød, T., Hunter, C., Fedak, M.A. and Kovacs, K.M. 2002. Salinity and temperature structure of a freezing Arctic fjord – monitored by white whales (Delphinapterus leucas). Geophys. Res. Let. 29: 2119, doi: 10.1029/2002GL015462


Martineau D, Lemberger K, Dallaire A, Labelle P, Lipscomb TP, Michel P, et al. Cancer in wildlife, a case study: beluga from the St. Lawrence Estuary, Quebec, Canada. Environ Health Perspect 110:285-292


McQuinn, I.H., Lesage, V., Carrier, D., Larrivee, G., Samson, Y., Chartrand, S., Michaud, R. and Theriault, J. 2011. A threatened beluga (Delphinapterus leucas) population in the traffic lane: Vessel-generated noise characteristics of the Saguenay-St. Lawrence Marine Park, Canada. J. Acoust. Soc. Am. 130:3661-3673.


(NAMMCO) North Atlantic Marine Mammal Commission 2000. Report of the NAMMCO Scientific Committee Working Group on the Population Status of Narwhal and Beluga in the North Atlantic. In: NAMMCO Annual Report 1999. NAMMCO, Tromsø, Norway, pp. 153-188.


(NAMMCO) North Atlantic Marine Mammal Commission 2002a. Report of the Joint meeting of the Scientific Committee Working Group on the Population Status of Narwhal and Beluga in the North Atlantic and the Scientific Working Group of the Joint Commission on the Conservation and Management. In: NAMMCO Annual Report 2001. NAMMCO, Tromsø, Norway, pp. 213-248.


(NAMMCO) North Atlantic Marine Mammal Commission 2002b. Greenland Progress Report on Marine Mammal Research. In: NAMMCO Annual Report 2001. NAMMCO, Tromsø, Norway, pp. 279-282.


(NAMMCO) North Atlantic Marine Mammal Commission. 2003. Greenland Progress Report on Marine Mammal Research. In: NAMMCO Annual Report 2002. NAMMCO, Tromsø, Norway, pp. 291-295.


(NAMMCO) North Atlantic Marine Mammal Commission. 2004. Greenland Progress Report on Marine Mammal Research. In: NAMMCO Annual Report 2003. NAMMCO, Tromsø, Norway, pp. 319-322.


(NAMMCO) North Atlantic Marine Mammal Commission. 2005a. Report of the twelfth meeting of the Scientific Committee. In: NAMMCO Annual Report 2004. NAMMCO, Tromsø, Norway, pp. 207-278.


(NAMMCO) North Atlantic Marine Mammal Commission. 2005b. Report of the thirteenth meeting of the Scientific Committee. In: NAMMCO Annual Report 2005. North Atlantic Marine Mammal Commission, Tromsø, Norway, pp. 161-310.


(NAMMCO) North Atlantic Marine Mammal Commission. 2009. Norway Progress report on marine mammal research in 2006 and 2007. In: NAMMCO Annual Report 2007-8. NAMMCO, Tromsø, Norway, pp. 337-366.


(NAMMCO) North Atlantic Marine Mammal Commission. 2010. Report of the sixteenth meeting of the Scientific Committee. In: NAMMCO Annual Report 2009. North Atlantic Marine Mammal Commission, Tromsø, Norway, pp. 237-456.


(NAMMCO) North Atlantic Marine Mammal Commission. 2012a. Report of the nineteenth meeting of the Scientific Committee.


(NAMMCO) North Atlantic Marine Mammal Commission. 2012b. Report Of The NAMMCO Expert Group Meeting To Assess The Hunting Methods For Small Cetaceans.


(NAMMCO) North Atlantic Marine Mammal Commission. 2017. Report of the NAMMCO-JCNB Joint Scientific Working Group on Narwhal and Beluga, 8-11 March 2017 Copenhagen, Denmark.


(NAMMCO) North Atlantic Marine Mammal Commission. 2018. Report of the NAMMCO Global Review of Monodontids meeting (GROM). 13-16 March 2017, Hillerød Denmark


Noest, O.A., Lovell, P., McConnell, B.J., Gammelsroed, T., Hunter, C., Fedak, M.A., and Kovacs, K.M. 2002. Salinity and temperature structure of a freezing Arctic fjord – monitored by white whales (Delphinapterus leucas). Geophysical Res. Let. 29:34-1 – 34-4.


O’Corry-Crowe, G., Lydersen, C., Heide-Jørgensen, M.P., Hansen, L., Mukhametov, L.M., Dove, O. and Kovacs, K.M. 2010. Population genetic structure and evolutionary history of North Atlantic beluga whales (Delphinapterus leucas) from West Greenland, Svalbard and the White Sea. Polar Biol. 33:1179– 1194.


Palsbøll, P. J., Heide-Jørgensen, M. P. and Bérubé, M. 2002. Analysis of mitochondrial control region nucleotide sequences from Baffin Bay belugas (Delphinapterus leucas): detecting pods or sub- populations? NAMMCO Scientific Publications 4:39-50. http://dx.doi.org/10.7557/3.2836


Richard, P.R. 2005. An estimate of the Western Hudson Bay beluga population size in 2004. Canadian Science Advisory Secretariat Research Document 2005/17. Available at http://www.dfo- mpo.gc.ca/CSAS/Csas/DocREC/2005/RES2005_017_e.pdf


Richard, P.R., Heide-Jørgensen, M.P., Orr, J.R., Dietz, R. and Smith, T.G. 2001. Summer and autumn movements and habitat use by belugas in the Canadian High Arctic and adjacent areas. Arctic 54:207- 222.


Sejersen, F. 2001. Hunting and management of beluga whales (Delphinapterus leucas) in Greenland: Changing strategies to cope with new national and local interests. Arctic 54:431-443.


Stewart, R.E.A., Campana, S.E., Jones, C.M. and Stewart, B.E. 2006. Bomb radiocarbon dating calibrates beluga (Delphinapterus leucas) age estimates. Can. J. Zool. 84:1840-1852.


Turgeon, J., Duchesne, P., Colbeck, G.J., Postma, L.D. and Hammill, M.O. 2012. Spatiotemporal segregation among summer stocks of beluga (Delphinapterus leucas) despite nuclear gene flow: implication for the endangered belugas in eastern Hudson Bay (Canada). Conserv. Genet. 13:419-433.


Wenzel, G.W. 1995. Ningiqtuq: Resource sharing and generalized reciprocity in Clyde River, Nunavut. Arctic Anthropology 32:43-60.

Start typing and press Enter to search